MIT-T-74-004 C3

MIT LOAN cor i
§ SEA
PROGRAM

POTENTIAL BIOLOGICAL EFFECTS OF
HYPOTHETICAL OIL DISCHARGES IN THE

ATLANTIC COAST AND GULF OF ALASKA

by
Stephen F. Moore
Gary R. Chirlin
Charles J. Puccia
Bradiey P. Schrader

REPORT TO COUNCIL ON ENVIRONMENTAL QUALITY.

(
/; l"l'(\

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Report No. MITSG 74-19
April 1, 1974



GIRCULATING GOPY
Sea Grant Depository

POTENTIAL BIOLOGICAL EFFECTS OF
HYPOTHETICAL OIL DISCHARGES IN THE
ATLANTIC COAST AND GULF OF ALASKA

by
Stephen F. Moore
Gary R. Chirlin

Charles J. Puccia
Bradley P. Schrader

Department of Civil Engineering
Massachusetts Institute of Technology

Report to Council on Environmental Quality
April 1, 1974

Report No. MITSG 74-1%
Index No. 74-819-Cwm



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASS. 02139

SEA GRANT PROGRAM

Administrative Statement

As a follow-up to the original Georges Bank Petroleum Study on
the environmental and economic effects of regional offshore oil de-
velopment, Stephen F. Moore, Gary R. Chirlin, Charles J. Puccia, and
Bradley P. Schrader, from M.I.T.'s Department of Civil Engineering,
have analyzed the specific biological consequences of hypothetical
0il discharges from 22 drilling sites on the Atlantic and Alaskan
offshore continental shelves and from 3 nearshore Atlantic terminal
sites. The ecological risks from offshore accidental oil spills on
Georges Bank and the Southern Baltimore Canyon are lower than for
those in the Gulf of Alaska and the Georgia Embayment. All near-
shore o0il spills would entail high environmental risk, and acci-
dental spills at the terminal sites might cause environmental changes
detectable for 3 to 10 years afterward. The authors have provided
the Council on Environmental Quality not only a comprehensive survey
of the effect o0il spillage might have on the organisms and habitats
of the ocean and coastal zone, but also significant data and quali-
tative predictions necessary for evaluating the environmental impact
of offshore 0il development.

The M.I.T. Sea Grant Program has organized the printing and
distribution of this report under the Sea Grant project established
to disseminate important studies and research results developed at
M.I.T. under other than Sea Grant support. Funds to do this came
in part from a grant by the Council on Environmental Quality, the
National Sea Grant Program and in part from the Massachusetts
Institute of Technology.

Ira Dyer
April, 1974 Director

room ALLZ 1-211 {817) 253.7041






ACKNOWLEDGEMFNTS

Special thanks are due to Dr. Fred Grassle and Dr. John Teal of the
Biology Department, Woods Hole Oceanographic Institute. Their comments,
criticisms and discussions throughout the study and review of early, nearly
unintelligible drafts, have been most constructive. The study would have
been impossible without the cooperation and imputs of biologists from The
Research Institute of the Gulf of Maine, Virginia Institute of Marine
Science and University of Alaska, In particular, the authors thank Mr. Ned
Shenton and Dr. Don Horton (TRIGOM) for their patience and cooperation; and
Dr. Morris Roberts (VIMS) for his detalled and constructive criticisms of
early drafts of this report. Also, acknowledgements are due to Mr. Rabert
Dwyer, Graduate School of Oceanography, University of Rhode Island, for his
assistance in compiling data for various parts of the study. Finally, Ms.
Mary L. Williams and Ms. Margaret Scott Gaines deserve special thanks for
patiently typing and retyping the numerous rewrites of the manuscript.

This study was sponsored by the Council on Environmental Ouality
through a grant to the Department of Civil Engineering, Massachusetts
Institute of Technology. Contract administration was provided by the MIT

Office of Sponsored Research 0OSP 81236.

i1



TABLE OF CONTENTS

SUMY L] . ) . - LN ) . ) L] . L] . [ LI ) . L] L] . LI ) - L] -

OBJECTIVE AND SCOPE OF ANARYSIS . . . . . . « . + « & .« .

2.1 Problem Statement e e e e e e e e e e e e
2.2 Report Organization . . . . . . . « « &+ « « « &
2.3 References

FRAMEWORK FOR ANALYSIS T T T

3.1 Nature of the Problem . . . . . . e © e
3.2 Modeling the Atlantic/Aslskan OCS Environment .
3.2.1 Population Analysis . . . . .+ ¢ + ¢ & ¢« & « v & &
3.3 Assessing Eftects of 0il e e e e e e e e e e e
3.3.1 Accldental Spills . . . . 4 ¢ &« 4 & s b a4 w ow

3.3.2 Continuous (Chronic) Discharges . . . . . . . .

3.4 References f s s s e ke e s 4 e s e s e et e s

SUMMARY OF ENVIRONMENTAL DESCRIPTION OF ATLANTIC/ALASKAN OCS

Basic Approach s 4 e e 4 a4 e s e e e s e v
Sub~Regions . . . &+ & &« ¢ ¢ o « ¢ & 4 0 rx 0w s
Habitat Descriptions * s s e a s s e 4w
Selected Species Descriptiens . . . . « « « .+ 4+ &
Incompleteness of Data . . ¢« « v o« ¢ « o o o + &
North Atlantic Sub-Regions . e « v e et s
Bay of Fundy to Cape Cod (TRIGOH) e v e e e s s
Cape Cod to Sandy Hook (URI) c e e e e e e

Mid- and South Atlantic Sub-Region (VIMS) ., . . .
Gulf of Alaska . .« &+ « « v 4 ¢ 4 o« 5 o « 0 o o s
References e s s e s e s s s e e e s s s

-

- A A O L R
B N RN

. s @
E- P I b

. e
. 4
M-

COMPOSITION AND CHARACTERISTICS OF OIL B T T

1 Introduction T
2 Composition of 01l e
3 Degradation and Weathering Processes . s e e e
4 Observed Persistence of 0il in Marine Subsystems .
5 Alaska--Some Considerations . . . . . . . . .
6 Summary and Conclusions . . . « « « ¢« & & « &
7 References e e 4 e s e w v w e e e e e e e e

RESPONSE AND SENSITIVITY OF INDIVIDUAL ORGANISMS TO OIL . .

6.1 Types of Effects e e e w e s e e e a4 e e
6.2 Data Base Evaluation . 0. s e e
6.3 Sensitivity of Individual Organisms--A Review
6.3 Lethal Toxicity e e b e e e e e s s e e e s
6.3.1.1 Flora . . 4 + & « & & o « 2 0 1 4 0 ot e v o4 e

s

111

10
10

11

11
13
14
16
17
17
18

19

19
19
20
20
21
21
22
24
26
28
29

30

30
31
32
36
41
42
44

46

&7
49
53
53
54



8.

.
£l N2

+

T R .

+

PPN
P . s

h Ul B W W W W W
s e & & &

Table of Contents, continued

Pelagic Fauna . . . . . « + o v & 4o v v o 4 . W
Benthic Fauna .o e s e e v e e e e w s
Summary of Toxicity Data b e 4 e s s e e
Sub-Lethal Effects on Behavior . . . . . « + + &
Incorporation of Hydrocarbons « h e a e e e
Coating and Habitat Alteratiom . . . . . . . . .
Sensitivity of the Selected Species of This Study
Summary s v 4 b s s e e s s e e s

References . . & & ¢ 4 4 o & o & s 5 a = o o + »

POPULATION AND COMMUNITY RESPONSES TO OIL e 4 e e e

-
M

a

] ol wed wd ) el
L ) WO L B = s
.

-

L P

viun Lo
P
M =

e N R e B B Y

e o W W
- a = e

B =

(VL)

) ]
- -
o L &

Introduction . .+ & « & & ¢« & 5 4 4 0 4 b 0w s s
Accidental and Continuous Discharges . . . . . .
Population Models and Data . . . s e e e e e
Accidental Spill Model: Initial Impact s e
Accidental Spill Model: Recovery e e s e s
Analytical Framework . . . . . ., . .
Recovery Model: Wide-Dispersal—Ubiquitous Species
Recovery Model: Wide-Dispersal-Non-Ubiquitous
Species (Birds) s e s e e e m e s e e .

Recovery Model: Non-Wide-Dispersal Species C
Recovery Model: Pelagic Species e e e e
Analysis s e e a e e e e e e e e e e
Fish and 041 . . . . s 4 s . e v 4 e s s

Accidental Spill Mﬂdel Regional Habitat Analysis
Recovery-Time Estimates for Selected Species ., .
Habitat and Regional Differentiatiom of
Vulnerability s e b e e e s e e e e s s .
Gulf of Alaska Regions . . + ¢« ¢« o « ¢ o s o = &
Continuous Spill Model . . . . . . ¢ + + + « .

Ref erences L] . . L] L] L L] . - L] * . L] . L] L] L] L
Appendix 7-1: Variation of Age-Structure Over
Time; A Mathematical Model . . . . e e

Appendix 7-2: Effect of Significant Adult
Mobility on Recovery Time . « . ¢« « + &« & « + &

ANALYSIS OF SELECTED HYPOTHETICAL OIL DISCHAPGES . . . . .

8.1
8.2

8.2.1

o 0o o
(WS I N R N
W K

Introduction . . . . . . .
Accldental Spills Originating from Hypothetical
Atlantic OCS Drilling Sites e e e e e s
Pelagic Zone Effects (including nearshore fish

species) B T T T T T T S
Otfshore Bottom Effects e e e s e e e e e

Nearshore Habitat Effects A e e e e s e s s s
Accidental Spills Originating from Hypothetical

Gulf of Alaska Drilling Sites e e e e s e e
Accldental Spills Originating at Terminals . . .
References . . . e h e e e e e e e e e .

iv

Page
54
56
56
57
61
62
63
64
66

73

73
73
74
75
77
77
81
85
87
RY
91
93

97
97

98

99
100
103
105
110
111
111
111
111~
113
114
115

116
117



Table of Contents, continued

Page

g9, CONCLUSIONS AND RECOMMENDATLIONS FOR RESEARCH . . « + + .« - 118
9.1 Conclusions e e e e e e e e e e e e e e e e 118

9.2 Recommended Researc e et e e e e e e e e 120



Chapter 1

Summary

This report is an aralysis of the primary bilological effects of potential
oil discharges resulting from hypothetical o0il production activity on the Atlantic/
Alagkan 0CS. The results are intended for imput to the Council en Environmental
Quality as part of the information base to decide: 1) whether or not to recom-
mend OCS oil exploration/drilling in these areas; and 2) if yes, where.

Although emphasis 1s placed on analysislof impacts and recovery from
large-velume infrequent accidental oil apiils, small volume continuous dis-
charges of hydrocarbons are also considered. Effects of oil releases from off-
gshore platforms and spills occurring at coastal terminals are assessed,

This study does not yield quantitative predictions of environmental im-
pacts of oil discharges. Awallable data are too sparse for such predictions to
be reliable, especially quantification of population/community level effects of
0oil. However, qualitative predictions are attempted which are rough order
of magnitude estimates of physical, chemical and blological changes likely
to occur due to oil releases into the marine environment. These predictions
cannot be extensively verified without additional field data. An attempt
is made to idenfify regional differences, which are relevant to pending OCS
petroleum resource development decisions. Regional differences of interest
include: 1) oil spill probabilities; 2) physical enviromnmental characteristics—-
spilll trajectories and the fate of oill in marine subsystems; and 3) biological
factors relevant to o0il effects. This report deals specifically with biclogical
factors. An additional objective of this study is an improved definition of

research needs relating to oil discharge impacts.



The study consists of several principal parts: 1) an environmental
inventory; 2) summary of response and sensitivity of individual organisms to
petroleum substances; 3) analysis of population/community level responses to
511, especially population recovery from accidental spills; and 4) assessment
of potential effects of specific oil discharges associated with hypothetical
0CS petroleum developments. -

Environmental inventories for four distinct marine sub-regions of the

-Atlantic/Alaskan 0CS have been prepared by sub-contractors. The Research
Institute of the Gulf of Maine (TRIGOM) in conjunction with the University of
Rhode Island (URI) prepared descriptions of two reglons: Bay of Fundy to
Cape Cod and Cape Cod to Sandy Hook, N.J. The Virginia Institute of Marine
Science (VIMS) prepared a description of the region from Sandy Hook to Cape
Canaveral, Florida. The University of Alaska compiled environmental data for
the Gulf of Alaska.

Information assembled by sub-contractors for Atlantic sub-regions con-
sists of several types. Each sub-region is subdivided according to habitats--
marine subsystems characterized by similar physical/chemical variables such as
temperature, salinity and sediment type and which céntain a characteristic
assemblage of species. Examples of habitats are rocky shores, worm and clam
flats, offshore bottoms and pelagic areas. Each occurrence of a habitat is
assumed to be physically, chemically and biologically identical within an
envirormental region. Of all species assoclated with each habitat a subset
of five to twenty species is selected from each habitat for detailed popula-
tion analysis. These species are selected because of their importance for
any one of many reasons including knowledge of life history, scientific
interest, ecological role or dominance, commercial value, recreational value,
endangered status, etc. The set of selected species are not considered

unique and especially theyare not considered



necessarlly sufficient to describe the actual community dynamics of a habitat,
They merely represent a manageable subset of species for analysis of population
level effects of oil spills. For each selected species data have ben scught
describing intraspecific characteristics (fecundity, mortality, larval life-
style, etc.) and interspecific characteristics (competitors, predators, food,
etc.). Habitats for the Gulf of Alaska cannot be characterized or even identi-
fied beéause of lack of basic envirommental data. Therefore, the Gulf of Alaska
is treated throughout this report separately as a special case. In general, lit-
tle biological analysis can be carried out concerning effects of oil spills in
the Gulf of Alaska.

Although the envirommental inventories constitute impressive volumes of
information, the data is typically incomplete, sparse, and uncertain, In parti-
cular, and most importantly, significant gaps exist in life nistory information
for selected species. For more than 40% of the selected species fundamental
data on fecundity, survivorship and larval 1ife-style is not available.

In general, effects of accidental spills are divided into initial im-
pacts and population/community recovery. Initial impacte depend on the oil ex-
posure-—amount, composition and distribution--and on the response and sensifivity-
of individual organisms to the exposure. Recovery is the result of complex
dynamic processes by which the system returns toward an ecological "equilibrium,"
following initial impacts.

Because several extensive reviews of literature on effects of oil on
individual organisms have been reported in the past two years, no attempt has
been made to carry out another comprehensive review. Rather, results of reviews
previously conducted at M.I,T. are updated and modified te conform to the study
at hand. However, consilderable effort is made herein to analyze the essentlial

problem of assessing population level effects.



Effects of oil on individuals are categorized as: 1) lethal toxic
effects due primarily to soluble aromatic hydrocarbons (boiling point<250°C);
2) sub-lethal toxic effects from soluble aromaticsi 3) coating of birds,
mammals and inter- and sub-tidal sessile speclies with oil; 4) alteration of
substrates by oil, which makes habitats uninhabitable for normally found
species; and 5) incorporation of hydrocarbons into organism tissues causing
tainting or accumulation of potential carcinogens. Insufficient data exist
to identify sensitivity of each selected species to each of these effects.
Based on a modification of a previous review of literature it is hypothesized
that exposure of adult marine organisms to 1-100 ppm soluble aromatics for a
few hours can be lethal. Concentrations as low as 0.1 ppm may be lethal to
larval stages. Such concentrations are expected to result from oil slicks
less than one to two days old, that is, unweathered. It is assumed that coat-
ing of inter-tidal areas with the main body of a slick (weathered or unweathered)
will kill wost sessile species. Although the amount of oil necessary to exclude
benthic species from their substrates is largely unknown, this is one of the
most important effects of oil spills because of the potentially long persistence
times (of the order of vears) of oil in sediments. Sublethal toxic effects of
oil, in particular interference with chemical cues, causing disruption of feed-
ing, reproduction or other essential 1life sustaining activities, may result from
concentrations of soluble aromatics as low as 10 ppb, Tainting and hydrocarbon
accumulation in organism lipid pools probably occurs in virtually all marine
specles due to either chemical equilibration with ambient water quality or food
chain accumulation. Analysis of population level implicatiéﬁs of sub-lethal
effects and incorporation phenomena i1g virtually impossible given the presgent
lack of understanding of governiﬁg phenomena. However, these effects of oil

must be recognized as potentially important environmental impacts.



Recovery from oil spills, although difficult to define, consists of
degradation and natural removal of o0il from exposed areas followed by
return of populations and communities. Persistence of oil in various
habitats depends on the physical variables controlling degradation pro-
tesses-—evaporation, dissolution, microbial oxidation and chemical/
photo-oxidation. Available nutrients, light, temperature, substrate
particle size and water velocities are identified as the most important
Physical variables controlling degradation processes, but functional re=-
lationships describing degradation rates are not available. Therefore,
estimates of pérsistence of.oil in habitats are made empi;;;ally by

inference from data reported for specific spills including: West

Falmouth, Santa Barbara, Tampico Maru, Tanker Arrow, San Francisco,

and Torrey Canyon. The results allow some differentiation among habitats,
but are not definitive. In general, oil deposited in unconsolidated,

fine sediments can remain chemically and/or physically insulting to the
environment for at least four years and as long as ten years or more, In
rocky substrates o0il may be naturally removed in as little as two years.
Although differences in persistence of oil in marine habitats likely
varies between biogeographical regions due to differences primarily in
temperature and sunlight, the magnitude of these differences has not been
identified from the data. It is hypothesized that oil in Northern habitats
may persist for time periods longer than iIn Southern habitats, other
factors heing equal.

Definition of biological recovery is highly subjecﬁive, depending on
one's point-of-view. In the case of 100% mortality in a habitat, return
to a specified density and/or stable age distribution are selected as de-
finitions of recovery herein. Little can be said in the case of partial
mortality situations, because there is no way of specifying the distribu-

tion of mortalities among age groups.



Analysis of blological recovery of a population (assumihg a physically

and chemically suitable habitat) must account for intraspecific charac-
teristics (fecundity, survivorship, etc.) and interspecific relationships
(competition, predation, etc.). Much of the data necessary to include

all of these facets of the problem is unknown. However, as a working
hypothesis, four broad classes of recovery strategies are identified

based on different modes of colonization and expansion in unsettled, hos-
pitable habitats. Species can be classified according to recovery strate-
gles from even sketchy life history descriptions. Recovery analysis for
each class is considered separately and applied to all species within

each class. The four classes and corresponding biological recovery time
estimates in unsettled, hospitable habitats are: 1) wide-dispersal-ubiqui-
tous immigrants ( a majority of marine apecies), recovery time is estimated
to be of the order of longevity (life span); 2) wide-dispersal-non-ubiquitous
(some birds), recovery time is unknowm, but this strategy 18 extremely vul-
nerable to unexpected adult mortality; 3) non-wide-~dispersal (Spartina spp.;
some amphipods, polychaetes and gastropods), recovery time i{s unknown but
longevity is a lower bound; and 4) pelagic species (fish and plankton),

only species demonstrating highly localized, discrete "breeding populations,”
e.g., some anadromous fish, are considered potentially vulnerable, but the
significance of any threat is indeterminate.

This analysis of recovery is only a first approximation and does not
consider many potentially important gapeets of the problem, Phenomena such
as explosive "blooms," successional prerequisites and overgrazing are not
well enough understood to model. An organism's niche is always assumed
available for repopulation. Gailning a foothold to initiate recovery is not
considered a problem. The results, therefore, must be accepted with due

caution,



Each selected species in each habitat in each biogeographical reglon
is clagssified by recovery strategy. However, the large data gaps and lack
of inclusion of interspecific relations, prevent the coalescence of the
species recovery time estimates to obtain habitat recovery time estimates.
Therefore, habitats are not differentiated intra- or inter—regionaliy
according to biological recovery time in unsettled, hospitable habitats
from 100% mortality due to an oil spill,

Although differentiation of biologlical recovery times among habitats
is not possible, initial-impact and recovery are used to attempt
to assess effects of oil spills associated with hypothetical OCS developments.
Impact on pelagic areas, offshore bottoms and nearshore habitats are eval-
uated for spills origirating from several hypothetical offshore drilling
sites in the Atlantic OCS and Gulf of Alaska. In general, spills originat-
ing from hypothetical Atlantic offshore platforms are net expected to
cause significant biological damage in terms of pOpuiation level effects.
Localized deposition of weathered patches of oil or tar balls on rocky or
sandy shores is likely. Where deposited such oil may persist for two
years or more depending on the type'of intertidal habitat impacted. Because
of the paucity of data for Gulf of Alaska, conclusions regarding biological
effects of oil spills in this region are even more difficult to draw.

The biological significance of continuous discharges from oil-water
separators or other sources of chronic discharges of hydrocarbons remains
obscure. It is recommended that discharges of this type be prevented until
a more definitive analysis can be made.

Spills originating nearshore—at terminals--~can be expected, in all
cases considered, to come ashore within 0-2 days and cause high rates of

mortality to most species exposed. Heavy oiling of substrates is expected



and physical/chemical recovery is likely to take at least 2-3 years in hard
substrates and five, ten or more years in fine, unconsolidated sediments.
Subsequent biological recovery can be expected to take many years at best.
Based on the analysis of hypothetical discharges of oil, it is con-
cluded that hypothetical drilling sites EDS 6, 7, 8 and 9 in the Baltimore
Trough and hypothetical drilling sites EDS 1, 2, 3 and 4 on Georges Bank
are least vulnerable to environmental impacts of oil. EDS 5 south of Long

Island, New York and EDS 10, 11, 12 and 13 in the Georgia Embayment pose

relatively higher envirommental risks due to probability of oil slicks
reaching shore within 3-5 days or less. Little is concluded from this
study one way or another, regarding hypothetical drilling sites in the

Gulf of Alaska.



CHAPTER 2

OBJECTIVES AND SCOPE OF ANALYSIS

2.1 Problem Statement

A decision to allow exploration and development of potential petroleum
resources in the outer continental shelf (0CS) of the U.S. Atlantic cecast
and Gulf of Alaska depends in part on potential biologicél effects resulting
from such development activities. A problem of particular interest is the
potential impacts of oil discharges originating from offshore platforms, trans-
ghipment activities and nearshore terminals. The principal objective of this
report is to assess as clearly as possible from available data the potential
biological consequences of such hypothetical oil discharges. In addition to
drawing conclusions regarding potential biological impacts of certain hypo-
thetical oil discharges, this report also recommends several areas of research
considered necessary to refine the analysis presented here.

The scope of this study is constrained to considér only cer-
tain hypothetical discharges of crude oil intc marine environments. Speci-
fically, three categories of discharges are analyzed: 1) infrequent, acciden-
tal oil spills originating from thirteen hypothetical drilling sites in the
Atlantic OCS (see Figure 2-1) and nine hypothetical driliing sites in the
Gulf of Alaska (see Figure 2-2); 2) continuous discharges from hypothetical
of fgshore platforms of oil-water separator effluents containing low concentra-
tions of petroleum hydrocarbons; and 3) infrequent, accidental oil spills
occurring at hypothetical nearshore terminal facilities (Buzzard's Bay, Massa-
chusetts; Delaware; Charleston Harbor, South Carclina). Hypothetical drilling
sitea and terminal locations were specified for analysis by CEQ. Analysis of

probability, size, trajectory and behavior of 0il spills considered herein



FIG.2.] LOCATION OF THE THIRTEEN HYPOTHESIZED
EASTCOAST DRILLING SITES (EDS) AND THE THREE

TERMINAL AREAS INVESTIGATED.
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are reported in Stewart, et al., (1974). No consideration is given in this

"secondary" envirommental changes, such as refinery ef-

report to impacts of
fluents.

This study is confined to an analysis of the bioclogflcal effects of the
specific discharges outlined above within the framework of available. data.
No new experimental or field data has been collected or sought. Environmen-
tal inventories of the study region have been prepared by sub-contractors,
as discussed in Chapter 4. Compilation of data regarding effects of oil on
marine environments is a principal task of the study repofted herein.
2,2 Report Organization |

The framework of analysis for this study is presented in Chapter 3, in-
cluding 2 discussion of limitations of the analysis and available data. In-
formation compiled by sub-contractors describing the biota of the study re-
gion 18 summarized in Chapter 4. Relevant chemical characteristics of crude
oil and persistence of 01l in marine enviromments (weathering) are discussed
in €hapter 5. Responses and sensitivity of individual marine organisms are
analyzed in Chapter 6. Chapter 7 presents a general analysis of population
and community effects of o0il discharges, especially accidental spills. The
results of analyses presented in Chapters 5, 6 anﬁ 7 are combined with spe~
cific hypothetical oil discharge scenarios in Chapter 8 and biological im-
pacts of these representative scenarios are assessed, Conclusions drawn from
the study are summafized in Chapter 9, including recommendations for research.

References are presented as the last section of each individual chapter.

2.3 References

Stewart R.J., Devanney J.W., and Briggs W. (14974) 0Qil Spill Trajectory Studies
for Atlantic Coast and Gulf of Alaska, report to Council on kEnvironemmtal
Quality, Washington, D.C., March 1, 1974, Department of Ocean Engineering,
Massachusetts Institute of Technology, Cambridge, Massachusetts
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CHAPTER 3

FRAMEWORK FOR AMALYSIS

An overall framework, basic assumptions and methods of analysis for
the Atlantic/Alaskan OCS petroleum studf~are described in this chapter.
Understanding of material presented in ensuing chapters may rely on
definitions, explanations and justification discussed here.

3.1 Nature of the Problem

The ultimate objective of an analysis of this type is to predict
with an acceptable degree of reliability the absolute effects of oil
spills resulting from various hypethetiecal OCS petroleum develcpments.
From the results of such an analysis one could directly determine a ranking,
based on a particular set of criteria, of the envirommental Yulnerability .
of various regions to the specified activities. In lieu of having such
definftive predictions of absolute effects it is still desirable, and a

principal objective, to lay out as well as possible regional differences
that do exist, even qualitatively, which may suggest relative regional

vulnerability,

In general, three sets of variables can be identified which may
provide a basis for identifying such differences:

1. probability of spills

2. physical characteristics of alternative regions
a., splll trajectories: where o1l goes and how fast

b. persistence and ultimate fate of o0il in the enviromment

3. biological factors: individual responses and sensitivities
to 0il and population/community recovery following exposure to oil

Wherever significant regional differences can be identified relative to
these variakles, a basis exists for making a decision., On the other hand,

if differences are not identified, this is not to say they do not

11



exist and one must proceed with caution accordingly. In any case, an
overriding consideration throughout this analysis is an attempt to
specify whether or not differences ekist. This report is concerned with
anzlysis of points 2b and 3.

No claim is made that the analysis undertaken during this project
answers definitively the question: "What are the biological impacts of
o1l spills occurring in the Atlantic/Alaskan OCS?'" The available data
simply do not allow a comprehensive answer to the question. In fact,
it can be argued that any apparent attempt to systematically answer this
question would hide the true nature of the situation and be irresponéibly
misleading. That is, such an anaiysis implies that the problem is under-
stood sufficiently well to warrant an attempt to answer the question,
when, in fact so many basic requisite facts are unknown that even in the
best of all possible worlds there is no way of knowing if the results of
the analysis are valid or not.

Although the above attitude is not subscribed to by the authors, an
attempt has been made to maintain a healthy awareness and respect for the
uncertainties that do exist. Hence, a principal objective of the analysis
is to indicate what is known and what is not,'and thereby point' out the
information base . upon which any decision is made. Tt is anticipated
that by at least asking the proper questions, formulation of a model
can begin, directingone's attention to available data needs. From the
avallable data and numerous assumptions a syntheais of information regard-
ing oil spill impacts is made leading to a set of conclusions which may
guide ensuing decigsions. Where possible, agsumptions are made using a

large range of parameter values and .emphasis is placed on "worst case"



analysis, 1.e., conditions which can be surmised to yield the greatest
envirommental effects. In any case, the results represent order of
magnitude estimates.

3.2 Modeling the Atlantic/Alaskan OCS Enviromment

One of the most difficult problems to deal with is the sheer magnitude
of the study. Spatially the study area includes a vast expanse of widely
varying marine enviromments. Temporally these enviromments change physi-
cally, biologically and chemically with periods rarnging from hours and days
to decades or more. In order to reduce the problem to a manageable level,
the Atlantic/Alaskan OCS is digscretized at seweral organizational levels
{described below) down to individual species. A few selected populations
are analysed in as much detail as possible.

Four sub-regions of the Atlantic/Alaskan OCS are identified and
further subdivided into habitats. Habitat, as conceived herein, is defined
as a subsystem of the marine enviromment which can be characterized by
certain similar physical/chemical variables such as sediment type and sali-
nity and which contains a characteristic assemblage of populations or com-
munity. Examples are the rocky shore, salt marsh and pelagic habitats (or
subsystems). It is assumed that each Rhabitat type is physically and
biologically uniform wherever &t occurs within each sub-region. For
each habitat type in each sub-regiom, a subset of species selected
from all species associated with the habitat is identified for further
analysis. It is not assumed that the selected species are sufficient
to account for community level dynamics in each habitat or are neces-
sarily ecﬁlogically dominant or "key". Species may be selected for
analysis for any number of reasons, including scientific importance,
commercial/recreational interest, ecological dominance, endangered or

unique species status and well-known status.
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The habitat approach is a useful environmental discretization for

analyzing the effects of oil spills dn the Atlantic 0CS. First,

the relationships between oil and various physical factors are essential
aspects of the effects of oil. Habitats provide a focal point for dif-.
ferentiating physical factors. Second, although the community of orga-
nisms associated with various types of habitats are not strictly uniform
and, in fact, may be widely variable, many important assemblages can be
delimited according to hébitats, with special cases noted where appro-
priate. Third, the definition of habitat communities may assist in identi-.c
fication of species which should be selected for population level analysis.
Finally, the analysis of oil spills can be keyed to habitats and intra-

and inter-subregional differences may he 'more easily identified.
3.2.1 Population Analysis

An important feature of the analysis is the treatment of populations.

Several reasons exist for using populations as the basic element of analy-
gis (Paulik, 1971). From an analytical point-of-view, a population i8 a
manageable unit for which some dynamic models exist of both density and
age-structure., In addition, man's attention is most often directed towards
the health of a population--commercial and recreation fisheries, endangered
species, bird watching, etc. As a result, most blological data 1s centered
on species level information. However, analysis of population interactions—-
" communities——cannot he ignored. No population can be fully understood
without analysis of the community in which it lives. Unfortunately, the
number of populations in any marine community is overwhelmingly large and
the complexity of their interactions poorly understood. As a first approxi-
mation for dealing with community dynamics, interspecific relationships
thought to control recovery processes for selected specles are only quali-
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tatively analyzed. Although this approach tends to overlook some of the
most important features of ecosystem dynamice, it is interesting to note
that entomologists and fisheries blolegists have typlcally relied on
population models which emphasize the life history of single species
{see, for example, Watt, 1968).

An alternative approach, not adopted here is to attempt to develop
community or ecosystem level models of energy flow and autrient cycling
(see, for example, Odum, 1971). Typlecally, such models represent energy or
mass transfers between groasly defined trophic levels, e.g., phytoplankton,
zooplankton, fish, benthic invertebrates, etc. In theory, a set of such
models representive of appropriate sub-regions and/or habitats could be
developed. However, even if large scale ecosystem models of some type
could be structured and necessary parameter values estimated, such an
approach is of questiomable value. Most importantly, responses of indivi-
dual organisms and POpulation/community recovery processes are an essential
feature of oll spill effects and therefore population level models are
necessary for assessment of effects. Ecosystem models do not attempt to,

nor can they, represent population level phenomena at the specles level.

An obviéualy import#nt éfep in the analysis described above is the
selection of species. It is unlikely that any tﬁo persons would inde-
pendently arrive at the same list of selected species for & particular
habitat, However, criteria such as ecological role in habitat, com-
mercial value, recreational value, endangered status (locally or globally),
well studied and scientific interest or value are all valid bases for
selecting species for analysis. Therefore, virtually any reason for
being imﬁortant is considered acceptable for including a species on a

selected list.



The actual selected species lists used in this study were provided by
sub-contractors who developed the basic environmental inventories of sub-—
regions. The crigeria leading to selected species recommendations by each
sub-contractor were only broadly outlined as above. Insufficient time was
available to provide the three sub-contractors an opportunity to closely
interact and further refine the basis for species selection.

3.3 Assessing Effects of 0il

Moore, et al. (1973) have previously described a general framework
for assessing the impacts of oil discharges into the marine environment.
Five basic processes which contribute to envirommental changes are 1llus-
trated in Figure 3-1. They are: inputs, transport and dispersion, bio-
logical effects and ultimate fate.

Inputs must be characterized according to amount, location, temporal
distribution and chemical form. Impacts of infrequent massive inputs

(spills) are likely to differ from low-concentration, continuous discharges.

Transport and dispersion processes by physical, chemical and biological

_agenté determine the ultimate extent and intensity of exposure to contami-
nants. In the case of oil,weathering processes which alter the chemical
composition of spilled oil during tramsport are particularly important.

Biological transfers and modifications may profoundly alter the nature of

0il by either bio~transformation {metabolism) or accumulation and storage
within the lipid fraction of an organism.

Primary focus of impact assessment I8 biological effects, at several
levels. Specific actions of a pollutant occur on individual organisms, but
the effects are cascaded throughout a community by resulting changes in
populations.

Ultimate fate of substances depends largely on biodegradability. Most
constituents of ¢il in aerobic environments are ultimately degraded to COZ’

but rates of degradation vary widely due to variations in chemical structure

and composition.
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This report is concerned primarily with biological effects and ulti-
mate fates of accidental and chronic discharges of oil resulting from
hypothetical 0OCS petroleum developments. Input characteristics are efther
specified by CEQ or assumed. Spill trajectories and transport assoclated
with this analysis are described by Stewart, Devanney and Briggs (1974).
3.3.1 Accidental Spills

Effects of accidental oil spills are divided imto two parts: 1)
initial impacts; and 2) recovery. Initial impacts are the actual pertur-
bations of physical/chemical and biological variables in an environment,
Recovery is the dfnamic process of returning to the pre-spill "equilibirum"
following initial impacts. Both physical/chemical and biological recovery
must be included in the analygis. Initilal biologicai impacts depend primarily
ot sensitivity of the individual organisms and the composition and amount of
olil to which they are exposed. Therefore an important step in the analysis
is to identify critical concentrations of petroleum hydrocarbons. Popula-
tion response and recovery depend on both intra-specific factorg--life
history parameters such as age specific mortality, natality, migration and
growth, and on inter-specific factors-—community relations such as compe-
tition and predation. Community dynamics are not treated iIn detail. Inter-
specific relationships for selected species known or hypothesized to play
an important role in recovery are noted, but their implications are not analy-
zed extensively.

3.3.2 Continuous (Chronic) Discharges

For the particular problem of assessing the population effects of
relatively continuous, low concentration discharges (chronic effects) a
model is most desirable but probably most difficult to develop. The problem

in this case is to estimate relatively long-term (many generations) effects
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of subtle changes in birth and death rates because massive mortalities from
direct lethal toxicity do not occur. Even with estimates of sensitivities
to low level concentrations (less than that causing direct lethal toxicity),
it may be virtually impossible to separate out population changes occurring
due to oil discharges from those caused by natural fluctuations such as tem—

perature and salinity.
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CHAPTER &

SUMMARY OF ENVIRONMENTAL DESCRIPTION OF ATLANTIC/ALASKAN OCS

4.1 Basic Approach

Section 3.2 establishes the framework used in this report to describe
the Atlantic OCS. The present chapter describes the specific sub-regions,
habitats, and selected species for the Atlantic 0CS. Lack of data prohibits
applying this framework to the Alaskan OCS. The Gulf of Alaska is treated
separately and a more qualitative subjective environmental description and
analysis is carried out for this region.

There exists a vast amount of knowledge (small relative to the data
needs) relevant to an environmental description of the Atlantic 0CS. In
order to most efficiently translate this knowledge into the framework used
in this report, the task of collecting and organizing all relevant data was
sub~contracted to marine biological consulting groups. FEach consulting
group has a working knowledge of the species in its particular region of
the Atlantic OCS and a knowledge of the relevant 1literature. Inclusion of
the blological expertise of the consulting scientists is essential to en-
suring that this study is as accurate, up-to-date, and complete as possible.
At the time of preparation of the present report, documents prepared by the
consultants are relatively voluminous, internal, draft manuscripts not vet
prepared for formal publication. The nature and amount of data compiled
by the sub-contractors is summarized in following sections of this chapter,
Readers interested in the specific data prepared may contact the sub~con-
tractors directly (see TRIGOM, 1973; VIMS, 1973; U of A, 1973).

4,1.1 Sub-Regions

The entire Atlantic/Alaskan OCS is divided into four sub-regions:
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1)
2)
3)

4)

Bay of Fundy to Cape Cod
Cape Cod to Sandy Hook
Sandy Hook tc Cape Canaveral

Gulf of Alaska

Consultants providing envirommental descriptions of these areas area as

follows:

1)

2)

3)

4.1.2

Regions 1 and 2 — The Research Institute of the Gulf of Maine
(TRIGOM), and the University of Rhode Island (URI--under con-
tract to TRIGOM)

Region 3 - The Virginia Institute of Marine Science (VIMS)

Gulf of Alaska - The Univeraity of Alaska (. of A.)

Habitat Descriptions

Descriptions of habitats provided by consultants include the following

information (where available);

1.

2.

4.]--3

Definition

Environmental Factors - characteristic physfcal and/or chemical
factors

Plant and Animal Relationships - general description of the organi-
zation of the biota, including dominant populations or food pathways

Food Web Diagram - only a rough estimate, highlighting major types
of organisms at each trophic level and including example species

Selected Species - selected from expanded species list (selection
criteria discussed in Section 3.2 of this report)

Expanded Species List - (incomplete) lists of species known to occur
in. habitat from which selected species are identifiled

Distribution of Habitat - map depicting occurrence of habitat in re-
glon,

Selected Species Descriptions

The consultants also provide information on important aspects of the

life histories of selected species:
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1) Larval life style - pelagic, demersal, time to metamorphosis, etc.

2) TFecundity - within range

3) Natural mortality rates of larvae, juveniles, and adults

4) Growth rate

5) Maximum densities of local population - variability

6) Chemical cues are used for spawning, feeding or migration

7} Spawning area

8) Spawning seasons, times, duration, age of first spawning

9) Spawning behavior if known including any information on control of
time of spawning '

10) Population distribution (range) of mobile species and routes of

migratory species

11) Major food species - for selected species

12) Major parasites and/or major commensals (on which the selected specles
depends)

13) Major predators
14) Major competitors

4,1.4 TIncompleteness of Data

The magnitude of the data compilation problem and the time frame of the
study (nine months) has resulted in incomplete habitat and life history des-

criptions in most cases. Habitat descriptions are relatively complete, al-

though expanded species lists have not been compiled in most cases, and food
web diagrams are not avallable in a few instances (see Table 4-1 for a
tabulation of work completed on habitat descriptions). On the other hand,
the life history information on selected species contains large gaps. TFor
more than 40% of the selected spécies the most fundamental information con
fecundity, survivorship, and larval life-style is not available (compiled
from TRIGOM, 1973; VIMS, 1973).
4.2 North Atlantic Sub-Regions

In the presentation to follow, some habitats have the same definition in
all three sub-regions, This does not imply that the organisms are the same
between habitats--only that the general physical/chemical conditions and the
basic community structures are similar.
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4,2,1 Bay of Fundy to Cape Cod (TRIGOM)
The following habitats are identified in this region:

1) Pelagic system - including estuary (inland), coastal
and open gulf

2) offshore bottom

3) Rocky shores - exposed and protected

4) Sand beach/shore

5) Salt marsh

6) Oyster — mussel reef

7} Worm - clam flat .
8) Shallow salt pond

The plankton based pelagic habitat includes small plants and animals
found in the water column excluding adult fishes which are treated
elsewhere. There are four general groupings: phytoplankton, holoplankton
(zooplankton which are pelagic throughout their life cycle), meroplankton
(usually larval forms or eggs of benthic invertebrates or fishes which
are only temporarily pelagic), and tychoplankton (usually benthic or
epibenthic invertebrates which swim up into the water column temporarily,
usually at night). Three general sub-habitats are recognized; 1} the
open ocean community existing over the Gulf of Maine and the banks rimming
it; 2) the coastal community in the water derived by mixing of open ocean
water with that from behind the headlands, and 3) inland water behind the
headland and extending shoreward to the 0.50/00 isopleth.

The offshore bottom habitat is by far the most extensive, comprising
an area greater than all other habitats combined (except the Pelagic |
habitat), with a variety of substratés probably equalling all the littoral
habitats collectively, and greater than any one of them., The species can

be genarally classified into two categories: those that burrow into the
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substrate, and those that live on the substrate., It is customary to con-
sider as epifauna those organisms that attach to or live on hard substrate
(rock, shell, timber, etc.) only; those associated with the sediment, even
those which rest on its surface, are for convenience classed as infauna.

Rocky shores include intertidal and subtidal rock formations
such as headlands, rocky ledges, outcropplings, boulders and pilings to
the 1imit of the seaweeds. Two major sub-habitats are included with sepa-
rate specles lists: 1) biota associated with rocky shores and headlands
exposed to wave stress, and 2) hard substrates, pilings and rock outcrop-
pings Inside of headlands and estuaries.

Sandy shores grade from beaches at the shoreline to subtidal areas
of sandy substrate down to the limit of both effective light penetration
for photosynthesis and effective wave action (ca. 20 m). The communities
change with depth of water. The beach area here includes the backshore to
the sublittoral bar and trough system in the surf area.

Salt marshes are defined as wetlands where the emergent vegetation is
composed of salt-tolerant grasses. Features also include salt pans, tidal
creeks and the subtidal areas of soft mud adjacent to the grass areas,
referred to as potholes in Maine. Salt marshes occur in protected waters
where mud deposition causes sufficient shoaling to allow colonization by

grasses with subsequent accumulation of peat substrate. The flora, fauna

and ecology of salt ponds is similar to salt marshes, particularly to
subtidal potholes, but will be treated as a separate habitat because of
their abundance and size in many coastal areas from Cape Cod South through

New York and New Jersey.



Mussel reefs are intertidal and subtidal communities based on and
dominated by beds of mussels. They may overlap with the rocky shore com~
munity or be found among mud flat communities where a preliminary source of
attachment (such as a small rock or boulder) has allowed initial settlement.

Worm and clam flats are characterized by accumulations of silt and
clay which, in the intertidal areas, form a low-profile zone of particles
sorted with fine fractions in the upper zone. The substrate can be quite
sandy and hence overlap with the beach-saﬁdy bottom category. Worm and
clam flats are always in protected embayments or estuaries where wave action
is ﬁot severe enough to disrupt the characteristic 'faunal assemblages.

Salt ponds are shallow lagoon areas formed behind barrier beaches
which are flushed regularly with the tide. They are characterized by
seasonal shifts in the sediment. Iﬁtertidal flats are not common but often
tidal deltas form ét the inlets. The shallow aqlt poud is rare in the
northern region and no reliable data exists. One pond was described,

(See the habitat description for region south of Cape Cod, section 4.2.2).

Table 4-2Z 1ists the selected specles for each habitat in the region
north of Cape Cod. Extended species lists are available only for rocky
shore, mussel reef and offshore bottom habitats; 1ists of important species
are available for the other habitats (TRIGOM, 1973},

4,2,2 Cape Cod to Sandy Hook (URI)

The following habitats are found in this region:

1) Pelagic system--including inland, coastal, offshore
areas, and migratory species

2} Offshore hottom
3) Rocky shore
4) Sand shore
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TABLE 4-2 Selected Species for
Bay of Fundy to Cape Cod

PELAGIC

Ceratium spp.
Chaetoceros spp.
Thalasstosira spp.
Pleurobrachia pileus
Calanus finmarchioug
Pseudocalanus minutue
Oithona aimilis
Microsetella norvegica
Eucheata norvegiea
Acartia spp. .
Tortanus discaudatue
Evadne nordmannt
Meganyctiphanes norvegica
Sagitta elegans
Limacina retroversa

Polychaete, mollusca, and decapod larvae

Fish larvae

Clupea harengue
Merlucoius bilinearis
Salmo ealar

Plautus alle

Rigsa tridactyla

OFFSHORE BOTTOM

Aurelia aurita

Nepthys incisa

Mueula proxima

Arctica islandica
Spisula solidissima
Placopecten magellanicus
Ampelisca vadorum
Homarus americanus
Pandulus borealis
Ophiura robusta

Gadus morhua
Pseudopleuronectes americanus

ROCKY SHORE

Ascophyllum nodosum
Laminaria SpPp.
Metridium dianthus
Thats lapillus
Mytilis edulis
Littorina littorea
Balanue balanoides
Homarus americanus

Strongylocentrotus droebachiensis

Somateria spectabilis

dinoflagellate
diatom

diatom
ctenophore
copepod
copepod
copepod
copepod
copepod
copepod
gopepod
cladoceran
euphausid shrimp
arroworm

sea butterfly

herring

silver hake
atlantic salmon
dovekie
kittiwake

coelenterate
polychaete worm
clam

mahogany quahog
surf clam

sea scallop
amphipod
lobster
northern shrimp
brittle star
cod

winter flounder

rock-weed algae
kelp

sea anemone

dog whelk
mussel
periwinkle
barnacle
lobster

sea urchin
eider duck



SAND SHORE

Nephthys caeca
Tellina agilis
Spisula soltidisaima
Pagurus longicarpus
Raustorius canadensis
Echinarachnius parma
Ammodytes americarnus

WORM and CLAM FLAT

Nereis virens
Arenteola marina
Streblospio benedicti
Glyoera dibranchiata
Mya arenaria
Polynicee heroe
Nassarius obsoletus
Macoma balthica
Mercenaria mercenaria
Corophium volutator
Crangon septemepinosus
Limilus polyphemus

MUSSEL REE¥S

Harmothoe imbricata
Harmothoe extenuata

Crassostrea virginica

Mytilus edulis
Crepidula formicata
Asterias vulgaris
Asterias forbesi

SALT MARSH

Spartina alterniflora
Clymenella torquata
Melampus bidentatus
Orchestiidae
Crangon septemspinogus
Diptera larvae
(Aedes sollicitans)
{Chironomus spp.}
Fundulus heteroclitus

TABLE 4-2 (Cont'd)

Pseudopleuroneotes americanus

Ammoepiaa leconteii

sand worm
¢lam

surf clam
hermit crab
amphipod
sand dollar
gsand launce

sand worm
lugworm
polychaete worm
blood worm

soft clam

snail

snail

clam

quahog or hard clam
amphipod

mud shrimp
horseshoe crab

polychaete worm
polychaete worm
virginia oyster
edible mussel
slipper shell
starfish
starfish

marsh grass
polychaete worm
snail

amphipod

mud shrimp

mosquitoes

flies

mummichog

winter flounder
sharptail-sparrow



5) Salt marsh
6) Salt pond

7) Worm and clam flats

The definiticns of the pelagic system, offshore bottom, rocky shore,
worm and clam flats, and salt marsh habitats in this repion are the same
as in the region north of Cape Cod (section 4.2.1).

A salt pond is a shallow embayment formed by a barrier beach which
separates it from open coastal water. Frewuently, there is a permanent or
semi-permanent inlet which permits tidal exchange. The ponds are variable
in size, ranging from a few acres to over a thousand acres. They vary in
depth from one to four meters, the maximum usually being in the vicinity of
a channel. Seasonal shifts in the sediment in these ponds sometimes pro-
duce tidal deltas which may close the inlet. In some ponds the inlets
are maintained by the construction of rock jetties or by frequent dredging.
Rivers, streams and ground water flow into the ponds producing variable
salinity conditions. The quantity of fresh water and the frequency of
tidal exchange determines the salinity levels of these embayments, which
in turn influences the composition of the plant and animal communities.
The bottom sediments include regions of sand, gravel, mud and clay. Salt
marshes are often located in close association either within or at the
periphery of the ponds.

Table 4-3 lists the selected species for the region Sandy Hook to
Cape Cod, ExtendedISPecies lists are available for the pelagic system and
salt pond; lists of important species aré.anailable for rocky shore and

salt marsh habitats (TRIGOM, 1973).
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TABLE 4-3

Selected Species for

Cape Cod to Sandy Hook

PELAGIC-INLAND

Skeletonema coetatum
Thalassiosira spp.
Chaetoceros spp.
Acartia spp.
Pseudocalanue minutus
Oithona spp.

Figh larvae

Menidia menidia
Alosa pseudoharengus
Osmerus mordax
Branta bernicla
Melanitta deglandi
Aytha marila

Larue argentatus

~COASTAL

Skeletonema costatum
Leptocylindrus spp.
Nitzschia spp.

Oithona spp.

Aeartia spp.
Centropages spp.
Brevoortia tyrannus
Clupea harengus
Pelecanus occidentalis

~OFFSHORE

Skeletonema costatum
Chaetoceros spp.
Thalassionema nitaachiodes
Calanus finmarchicus
Centropages typicue
Pseudocalanus minutus
Sagitta elegans
Stenotomus chryeops
Seomber scombrus
Morone saxatilis
Pomatomus saltatriz
Thunnus thynnus
Oceanitee oceanicus
Balaenoptera musculus
Balaena glaetalis
Mégaptera novaeangliae
Balaenoptera physalus

diatom
diatom
diatom
copepod
copepod
copepod

silversides

alewife

american smelt
brant

white-winged scoter
greater scaup
herring gull

diatom
diatom
diatom
copepod
copepod
copepod
menhaden
herring
brown pelican

diatom

diatom

diatom

copepod
copepod
copepod

arrow worm
scup

mackerel
striped bass
bluefish
bluefin
Wilson's petrel
blue whale
right whale
humpback whale
fin whale



TABLE 4-3 (Cont'd)

-MIGRATORY

Pomatomous saltarix
Morone saratilis
Thunnus thynnus

OFFSHORE BOTTOM

Cerianthiopeis americanus
Nephthys incisa

Pherusa affinis
Ampharetid spp.’

Nucula proxima

Tellina agilis

Ampeligea vadorum
Leptocheirus pinguis
Cancer spp. '
Paralichthye demtatus
Limanda ferruginea
Pseudopleuronectes americanug
Pollachius virens

Gadus morhua

Merluceius bilimearis
Urophycis chuss
Melanogrammus aeglefinus
Peprillus tricanthus

ROCKY SHORE

Fucus spp.
Ascophyllum nodosun
mwm 8P
Mytilis edulis
Littorina littorea
Thats lapillus
Balanue balanoides
Cancer borealis
Homarus americanus
Asteriae forbesti
Arbacia punctulata
Tautogolabrus adspersus
Tautoga onitis
Larus argentatus
Halichoerus grypus

bluefish
striped bass
bluefin

anemone
polychaete worm
polychaete worm
polychaete worm
clam

clam

amphipod
amphipod

crab

summer flounder

yellowtail flounder

winter flounder
pollack

cod

silver hake

squirrel or red hake

haddock
butterfish

algae

rock week
kelp
missel
periwinkle
dog whelk
barnacle
jonah crab
lobster
starfish
sea urchin
cunner
tautog
herring gull
grey seal



TABLE 4-3 (Cont'd)

SAND SHORE

Ammodytes americanus
Sterna hirundo
Numenius borealis
Pagserculus princeps
Halichoerus grypus

SALT MARSH

Spartina alterniflora
Modiolus demigsus

Littorina littorea

Melampus bidentatue

Careinus maenas

Uea pugnax and pugilator
Orcheatia palusiris

Fundulus hetercelitus
Pseudopleuroncctes americanus
Menidia menidia

Agelatus phoeniceus phoeniceus
Pandion haliaetus

Anas rubripes

Melanitta deglandi

Larus argentatus

Ondatra zibethica

Microtus pennsylvanicus provectus

SALT POND

Zostera marina
Ruppia maritima

Ulva lactuca
Skeletonema costatum
Chaetoceros spp.
Acartia eclausi

Nereis virens

Gemma gemma
Crassostreqa virginica
Mercenaria mercenaria
Mya arenarta

Spisula solidissima
Nassarius obsoletus
Pagurus longicarpus
Callineotes sapidus
Menidia menidia
Fundulus heteroclitus
Paeudopleunonectes americanus
Aythya marila

Anas rubripes
Melanitta deglandi
Pandion haliaetue

Larus argentatus

sand launce
common tern
eskimo curlew
ipswich sparrow
grey seal

marsh grass

ribbed mussel
periwinkle

snail

green crab

fiddler crabs
beach hopper
mummichog

winter flounder
ailversides

eastern red-winged blackbird
osprey

black duck
white-winged scoter
herring gull
mugkrat

meadow vole

eel grass

aquatic angiosperm
sea lettuce
diatom

diatom

copepod

sand worm

gem clam/pea clam
virginian oyster
hard clam/quahog
soft clam

surf clam

snail

hermit cradb

blue crab
silversides
mumzichog

winter flounder

greater scaup
black duck
white-winged scoter
osprey

herring gull



WORM and CLAM FLATS

Pectinaria gouldii
Clymenella torquata
Mercenaria mercenaria
Ensis directus

TABLE 4=3 (Cont'd)

trumpet worm
polychaete worm
quahog/hard clam
razor clam



4.3 Mid- and South Atlantic Sub-Region (VIMS)
The following habitats are found in this composite region:

1) High energy beach

2) Marsh {(=alt)

3) Oyster reef

4) Worm and clam flats

5) Grass bottom systenc

6) Oligohaline system (0.5-5.0%)

7) Medium salinity plankton system
(Mesohaline) (5-18X)

8) Coastal system
9) Neutral embayments

The high energy beach, worm and clam flat and salt marsh habitats are
defined here the same as in the region north of Cape Cod (section 4.2.1).

Oyster grounds, reefs or "rocks” occur in abundance in the shallow
embayments of the coast from New Jersey to Florida. Such reefs may occur
subtidally. Oysters developing on soft bottoms gradually convert the area
into a firm substrate of shells as numbers accumulate. These reefs thus
provide substrate for a wide variety of benthic organisms, including algae,
sponges, cnidarians, flatworms, nemerteans, bryozoans, polychastes, other
mollusks, crustaceans and tunicates. The fauna and flora assoclated with
a given oyster reef depends in large part upon salinity, with those of
higher salinities having a greater number of species represented.

Grass bottom systems are intertidal and shallow subtidal communities
based on and dominated by beds of eelgrass (Zoetera marinal). These systemé
are eurythermal and euryhaline, and occur primarily in sheltered areas
having a mud or sand-mud bottom. PRelgrass provides substrate and shelter
for a rich and varied biota, the beds thus comprising a complex epibenthic

community,
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Oligohaline wateré are defined as those having a salinity of 5 to 0.5
0/00. The unidirectional flow of water in the limnetic zone chaﬂéeé to
slow circulation in the oligohaline regiﬁe, and the waters are charac-
teristically turbid. Oligohaline systems are subjected to sudden
fluctuations in salinity due to varying fresh water influxes.

The medium salinity plankton system or mesohaline system encompasses
the 5-18 0/00 salinity zone or mid-estuary. Geographical delimitatioen
of the éone is impossible because the zones may shift depending upon such
factors as tidal cycles, volume of river flow, precipitation, evaporatiom,
and variations in salt water intrusion. This category is not restricted
to plankton and might better be termed 2 mesohaline system. However,
planktonic organisms constitute the dominant blomass of the mid-estuary and
form the base of the food web. The coastal system covers the coast from
littoral waters to the edge of the continental shelf.

Neutral embayments are partially enclosed coastal enviromments re-
ceiving negligible river drainage. TIn the neutral embayment, precipitation
approximates evaporation, sedimentation rates are low, salinity is relatively
constant, and seasonal biotic variations are complex. Specles diversity is
typically high and composed largely of marine organisms. Water temperature,
light, and nutrients a¥e considered to be the primary factors of ecological
significance in the temperate zone. WNeutral embayments have received very
little attention; no detailed studies have been made on such environments
in the region from Sandy Hook to Cape Canaveral. Reliable species lists
and food web summaries are thus impossible to compile for this region.

Table 4-4 lists the selected species for the joint mid- and south
Atlantic region. Very short lists of some additional important species in

each habitat are available (VIMS, 1973).
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TABLE 4-4

Selected Species

Sandy Heook to Cape Canaveral

HIGH ENERGY BEACH

Donax variabiles
Spteula eolidissima
Emerita talpoida
Ocypode quadrata

Amphiporeia spp.

MARSH

Spartina alterniflora
Spartina patens
Juncus gerardi
Juncue roemerianus
Modiclus demiassus
Prokelistia marginata
Orchelimum fidieinum
Uea spp.

OYSTER REEF

Cliona .spp.

Diadumene Leucolena
Polydora spp.
Crassostrea virginica
Urosalpinx cinerea

WORM and CLAM FLAT

Clymenella torquata
Diopatra cuprea
Mercenaria mercenaria
Mya arenaria

Rangia cuneata

GRASS BOTTOM SYSTEMS

Zostera marina
Paracercets caudata
Bittium spp.
Aequipecten irradians
Crepidula convexa

coquing clam
surf clam

sand mole crab
ghost crab
amphipod

marsh grass

cord grass

black grass

needle rush

ribbed mussel

plant hopper

salt marsh grasshopper
fiddler crabs

boring sponge
anemone
pnlychaete worm
virginian oyster
oyster drill

polychaete worm
polychaete worm
hard clam/quahog
gsoft clam

clam

eel grass
isopod

snail

bay scallop
slippershell



OLIGOHALINE SYSTEMS

Spartina spp.
Rangia cuneata
Neomysis americana
Trinectes maculatus
Micropogon undulatus
Letostomue zanthurus
Cynoseion regalis
Brevoortia tyrannus
Morone saxatilis

TABLE 4-4 (Cont'd)

MEDIUM SALINITY PLANKTON SYSTEMS

Chrysaora quinquecirrha
Crgggostirea virginiea
Aeartia spp.
Callinectes sapidus
Brevoortia tyrannus

COASTAL SYSTEMS

Spisula solidissima
Penaeus spp.

Squalus acanthias
Brevoortia tyrannus
Stenotomus chrysops
Paralichthys spp.
Menticirrhus americanus

grasses
clam

oppossum shrimp
hog choaker
croaker

spot

gray trout
menhaden
striped bass

ses nettle
virginian oyster
copepod

blue crab
menhaden

surf clam

shrimp

spiny dogfish
menhaden

scup

southern flounder
gouthern kingfish



4.4 Gulf of Alaska

A lack of information prevents the application of the discretized
approach (presented in Chapter3j to the Gulf of Alaska problem, The
important role of physical factors in determining the nature of biological
communities is the basis for the habitat approach. Very little specific
information concerning the physical characteristics of the Alaskan Gulf
coast is availlable. As a result, the habitat concept is not applied to
the Gulf of Alaska.

Most of the information available in the Gulf of Alaska concerns the
distributfons and life histories of commercially important fish and shell-
fish species (Table 4=5). Fven this infermation provides only an incom-~
plete description of the total populations in the area; for example, some
Temote areas have no reports of crabs or fish simply because fishing
effort has not yet focused there. Most of the data provided does not
differentiate between areas where exploratory fishing has not digscovered any
large exploitable populations, and areas where no exploratory fishing has
been undertaken at all.

Some information about the depth range of demersal species (groundfish,
crabs, etc.,) can be inferred from catch statistics, but more detailed data
does not exist. The distributions of the five species of salmon along the
coast are even less well known, except for the approximate times of upstream
migration and spawning.

Information about the geographical distribution of shore birds is
available, but most of it is in terms of "presence-absence" data for large
areas of coast. A few areas, notably the Copper River Delta in the Eastern
Gulf, are important feeding and breeding areas. As with fish, little specific

life history information is available.
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CHAPTER 5

COMPOSITION AND CHARACTFRISTICS OF OIL

5.1 Introduction

Crude petroleum is a complex mixture of hundreds of chemical compounds
derived from biological matter which has accumulated in reservoirs in the
earth and been subject to physical and chemical processes extending over
millions of years, Petroleum from different geographical areas generally
contains the same compounds but with different percentage composition.
Because the biological effects of groups of similar compounds vary signifi-
cantly, it is essential to consider the relative abundance of the various
comtpounds in a particular crude oil or in a petroleum fraction which entei s
the environment.

Petroleum derived substances are ubiquitous in the marine environment.
Natural seeps are.primary sources in some areas but in modern industrial
times significant qﬁantities of oil introduced to marine environments can
be attributed to man's activities. When o0il is released into the ocean,
accidentally or intentionally, physical forces transport it throughout a
region. Wind ie a prime mover as well as currents, waves &nd tides. 0il
is either dispersed in the water column to unmeasurably low concentration,
forms tar balls which appear on the surface, becomes incorporated into
sediments, or attaches to various substrates: rocks, mud, sand, plants,
animals, and so on, Degradation processes such as evaporation and oxidation
continually alter the composition of oil by removal and transformation of

various constituent compounde.
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5.2 Composition of 0il

Petroleum refers to a broad class of compounds composed of hydrocarbons
(greater than 757 of the total constituente) and non-hydrocarbons, i.e.,
organics containing sulfur, nitrogen, oxygen, and possibly trace metals
(Constantinides and Arich, 1967; Bestougeff, 1967).

Composition of crude petroleum is most easily deecribed in terms of
hydfocarbon constituents (Bestougeff, 1967). Useful categories of hydro-
carbons are:

(1) n-paraffins (normal and branched);
(2) Cyclo paraffins;

(3) Aromatics; and

(4) Naphtheno-aromatics.

Paraffing can make up to 25X of the composition of a crude petroleum. They
tend to predominate in the low boiling (40°~-230°C) pertions of crude oil.
They usually have a large number of different configurations due to different
pogitions of the branch. Cyclo paraffins may constitute from 30 to 60% of
the composition of petroleum, Although the relative abundance of cyclo
paraffins does not change with boiling point the type of compounds may
differ from crude to crude. The principal change is the number of rings.
Single cyclo-naphthenes form a major part of the cyclo paraffins although
two to six rings are not unusual, and even ten rings can be found In lubri-
cating olls. Aromatic compounds contain one or more rings but have quite
different properties than cyclohexane or other naphthemes. Benzene and
benzene derivatives are major constituents of crude oil. Alkyl-benzenes
with one or more substituents are the major low boiling constituents. 1In
the higher boiling fractions tri- and polycyclic compounds are present,

Polycyclic aromatic hydrocarbons are found in rather small quantities in
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petroleum (a few fractions of a percent). Naphthenic hydrocarbons and
naphtheno-aromatics form a major component of higher boiling petroleum
fractions. Most are substituted with the substituted benzene portion
having short chains (methyl or ethyl) and the cycloparaffin part longer
alkyl chains. Residual fractions comsist of high boiling hydrocarbons of
all types, containing oxygen, sulfur, nitrogen and trace metals with mole~
cular weights in the range of 900-3000. They can represent a significant
portion of the crude, form O to 20%. Though their composition 1s not
completely known they are essentialiy layers of condensed aromatic and
naphthenic rings containing heterocyclic atoms connected by short n-paraffin
chains.

In addition to classification by molecular structure, hydrocarbon
molecules can be assorted by boiling point ranges. Moore, et al. (1973)
have distinguished eight fractions of oil, which are summariz;d in Table
5.2-1, The fractions identified i{n Table 5.2-1 corréspond closely to the
API product classification (Rossini, 1960). Also shown in Table 5.2-1 are
estimates of ranges of physical/chemical constants for each fraction.

5.3 Degradation and Weathering Processes

The chemical composition of petroleum in the environment is altered
by weathering processes, including evaporation, dissolution, microﬁial
oxidation, chemical-oxidation, and photochemical reactione (Blumer and Sass,
1972). 1In addition, the rates of degradation are functions of the physical
environment: temperature influences most degradation processes; nutrient
and inorganic substances gffect microbial degradation; the strong forces
of the wind, tides, currents and waves have pronounced effects on evaporation,
discolution and sedimentation processes.

Evaporation depletes the lower boiling components {fractions 1, 3 and 5, Table

5.2-1) but leads to little or no fractionation between hydrocarbons
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TABLE 5.2-1 (Continued)

a - for further detail see:

1. Bestougeff, M.A. in Nagy, Bartholomew and Colombe, Fundamental
Aspects of Petroleum Geochemistry, Elsevier Publishing Company,
New York, New York, 1967,

2. Rossini, Fredrick D., Hydrocarbons in Petroleum, Journal of
Chemical Education, Vol. 37, No, 11, November 1960,

3. Smith, H.M. Qualitative and Quantitative Aspects of Crude Oil
Compoeition, U.S. Bureau of Mines Bulletin 642, 1968,

b - taken or estimated from:

1. Bandbook of Physics and Chemistry

2, Physical/Chemical Constants for Organic Compounds
¢ - taken or estimated from:

1, Klevens, H.B., Solubilization of Polycyclic Hydrocarbons,
Journal of Petroleum Chem., 54:283-298 (1950)

2, Peake, Eric, and G.W. Hodgson, Alkanes in Aquecus Systems.
II. The Accommodation of C12-Cl3 n~Alkanes in Distilled Water,
J. Am. 011 Chemists' Society, Vol. 44, pp. 696-702, Dec. 1967.

3. McAuliffe, Clayton, Determination of Dissolved Hydrocarbons in
Subsurface Brines, Chem. Ceol., 4(1969), 225-233,

4, Gerarde, H.V., Toxicology & Biochemistry of Aromatic Hydro-
carbons, Elsevier Publishing, London, 1960.




of the same bolling point that belong to different structural series (Blumer, 1970).

Dissolution also removes preferentialiy the lower molecular weight
components of an olil. However, aromatic hydrocarbons have a higher solu-
bility than n-paraffins of the same boiling point (Blumer, 1970).

Biochemical (microbial) attack affects compounds within a much wider
boiling range than evaporation and dissélution. Hydrocarbons within the
same homologous series are attacked roughly at the same rates. Normal
paraffing are most readily degraded. 1In gas chromatograms this type of
degradation manifests itself as a lowering of the ratios between straight
chain and adjacent branched paraffins. Extended biochemical degradation
then results in gradual removal of the branched alkanes. Cycloalkanes and
aromatic hydrocarbons (fractions 3-8) are more resiataﬁt‘and disappear at a
much slower rate (Blumer, 1970). |

Chemical and photo-oxidation also effect petroleum substance but the
processes are not well understood. That photo-oxidation can be significant
has been recently demonstrated by Freegarde, et al. (1970).

The rates of degradation of each fraction are not well known. n g 1,
the effects of weathering processes are the rapid (1-2 days) depletion of
lower boiling fraction (boiling point < 250°C) from a slick by evaporatio:
and dissolution and slow degradation (in terms of years) of higher boiling
fraction by microbial and chemical oxidation {(Moore, et al. 1973).

The heavy residuals of o0il which are not degraded or deposited in
sc¢ Laents are found in floating tarry globules known as tar lumps or tar
balls. These are ubiquitous and copious (Morris and Butler, 1973). In this
form, petroleum can be transported long distances to be deposited later in

botton sediments or washed ashore.
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011 can be classified as weathered or unweathered. By weathered oil
is meant that concentration in a slick of hydrocarbon fractions with boiling
points less than 250-300°C has been reduced to concentrations which do not
cause toxic effects (See Cﬁapter 6). One to two days has been estimated as
a typical time oll must be in the pelagic enviromment to be considered
weathered.

An important process affecting the ultimate fate of oil in marine
environments is sedimentation and deposgition in subtidal and intertidal
substrates. Although chemical composition of 0il is not altered directly,
0oil incorporated in unconsclidated sediments may persist for long periods
of time (mee Section 5.4), especially higher boiling fractions. However,
loss of low boiling fractions from unweathered oil incorporated in sediments
may also proceed at much slower rates than from a slick (months rather than
hours or days). This hypothesie is suggested by data from the West Falmouth
spill (Blumer and Sass, 1972).

53.3.1 Effect of Physical Variables

It 18 clear from the foregoing discuesion that rates of weathering
may be significantly affected by physical variables such as temperature,
light, water turbulence, oxygen and microbial nutrient concentration, and
substrate particle size.

In theory, the relevant physical parameters described can be function-
ally related to the various degradation processes (microbial, chemical,
evaporation, ete.) and the residence time of oil computed for a particularl
habitat. Unfortumately, the problem is additionally complicated by the
complex chemical nature of oil, as has been discussed. A model then must

account for the effect of each physical factor on each of the weathering
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processes for each of several fractions of hydrocarbons. It has not been
possible to develop such a model during this study. However, it is doubtful
that appropriate data exists to derive rates of degradation. In addition,
many of the functional relationships are poorly known. For example, the
relationship between sediment particles and adsorption/absorption of oil
is extremely important, but little umderstood {Meyers, 1972). Although
quantitative measures of degradation rates have not been identified and a
complete listing of interrelationships among physical factors and weathering
is not possible at this time, illustrative cases can be described. Substrate
nutrients affect microbial degradation. Nitrogen and phosphorus have a
strong positive effect on the degradation rates—-in so far as they are
limiting to microbial growth, Temperature influences virtually all of the pro-
cesses, Evaporation is certainly increased by higher temperature, as 1is
dissolution. Rates of oxidation processes proceed faster at higher tempera-
tures. Microbial degradation is typically enhanced by increased temperature
up to the temperature tolerance limit of the organisms involved. Oxygen
must be plentiful for aerobic microbial degradation to be active. Indeed,
this may be a limiting factor in many locations and might explain the long
residence times in sediments, like muds, where anerobic conditions are known
to exist (Gunkel, 1973). Also, sediment particle size can cause incorporation
and absorption of oil, thus storing the oil, resulting in a longer persis-
tence time. In addition, finer sediments have a greater storage capacity
than coarse sediments. Finally, exposure of o0il to light of higher intensity
and/or longer duration increases photo-oxidation and decreases persistence
time.

Based on the foregoing discussion, it is hypothesized that oil deposited

in sediments will in general persist longer in northern OCS regions than
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in southern 0CS regions. However, the magnitude of this difference is not

estimated.
5.4 Observed Persistence of 0il in Marine Subsystems

Although a model describing weathering and degradation of oil in ma-
rine environments is not developed, reports of observations following ac-
tual spill events do provide an empirical hasis for estimating persistence
times. The necessary data for a spill are amount and composition of oil
deposited in a habitat and observations on the length of time oil remains
in the habitat, Data of this type are best obtained by analytical techni-
ques, such as chromatography, but few spill investigators haﬁe employed
such techniques. More often, visual observations are made and presence or
absence of petroleum substances is only grossly determined. 1In splte of re-
sulting problems of interpreting reported data, some insight is gained by
reviewing post-splll studies which have given attention to persisténce of
oil. Spill events reviewed are!

1) San Francisco Bay, California - Arizona Standard and

Oregon Standard

2) Chedabucto Bay, N.S. Canada - Arrow
3) West Falmouth, Massachusetts ~ Florida

4) Wreck Cove, Washington - General M.C. Meigs

5) Santa Barbara, California -~ Channel Well A-2]1

6) S.W. England - Torrey Canyon

ED) Casco Bay, Maine - Northern Gulf

The following are summaries of data from reports on these spills,
which emphasize data {llustrating the presence of oil and its persistence

in a habitat.
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1)  San Francisco, California. The spill occurred on Jaruary 18, 1971

when an estimated 20,000 bbls. of Bunker C was released. 011 entered two
types of habitats: rocky shores and mussel reef. The o0il was unweathered,
entering the habitats several hours after the accident. The quantity, type,
or composition of the o0il 1is not specified. A survey in August, 1971 showed
mussels still coated with oil (Chan, 1973). This, the only physical obser-
vation made, infers that o¢il was in the mussel reef zone for at least six
months. The report estimates that two vears after the spill all "signs”

of o0il will have disappeared from the rocky shores (Chan, 1973}; these
"gigns' are probably visual. Thus a minimum estimate of persistence of oil
on the rocky shore of San Francisco Bay is two vears.

2) Chedabucto Bay, N.8., Canada. On February 4, 1970 a spill released

approximately 108,000 bhls, of No. 6 (Bunker C} fuel.oil into the Bay. The
oil entered two habfitats: sandy beach and rocky shore. Ultraviolet
spectrophotometry showed 300 ug Bunker C/g wet weight of sediment in the
first three meters on Jerseyman Island in April, 1972 (Scarratt and Zitko,
1972). This was comparable to the initial quantities found. Hence 26
months after the spill the mud bank had shown little loss of oil. At the
game time only 11 and 5 ug of Bunker C/g wet weight of gravel was found off
of Crichton Island (Scarratt and Zitko, 1972)., This was only marginally
greater than controls s¢ oil did wnot persist in the gravel, Re-ciling,

due to the original spill, occurred in Chedabucto Bay as late as the summer
of 1973. The lagoons (salt marshes, estuaries) show 50% of the original
o0il content, but not the rocky shores (Thomas, 1973). From this data,
persistence of oil in the salt marsh and muds can be estimated as at least

three years.
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3) West Falmouth, Massachusetts. On September 16, 1969 an estimated

4,500 bbls. of #2 fuel o0il was released. Two years after the spill

117 mg fuel 011/100g dry weight of sediment was found in Silver Beach

Harbor (station 31). This was the heaviest hit area and it would be ex-
pected to have the greateat concentratien of oil. The normal alkanes show
an initial rapid degradation but after two years they were still repeorted

as present (Blumer and Sass, 1972). From gas chromatography (utilized
throughout the study) it wes demonstrated that 30% of the eil in the
sediments in April 1971 was aromatic. The oil penetrated three inches

into the sediments at Station 31; and, cil was found in the marshes at

least five feet below the surface (Blumer and Sass, 1972). The authors
estimate that for at least two more vears, oil will be found in the sedi-
ments (Blumer and Sass, 1972) , that is a total estimate of four years since
oil first entered the sedimenta. The n-Cl7/P ratio was nearly constant for
' eight months in areas where heavy oiling took place, suggesting a delay

in bacterial degradation (Blumer and Sass, 1972). In the marsh undegraded
fuel oil was still present four years after the spill (Teal, 1973). Because
Buzzards Bay has moderate total organic contemt the authors conclude a

poor retentive capacity for hydrocarbons (Blumer and Sass, 1972). The
straight chain hydrocarbons are utilized by bacteria, without delay, in
surface of the salt marshes (Blumer and Sass, 1972). There is evidence that between
2.5 and 7.5 centimeters into sediments at Station 31 the oil was less degraded
than at the surface; after two years oil below the surface of the sediments
was degraded to the game extent as the surface sediment oil after 10 months
(Blumer and Sass, 1972). In the Wild Harbor River (Stations II, IV, and V)
the fuel oil was not as persistent; two years after the spill there was

an average of 20 mg 0il/100g dry weight of sediment, although for the month

38



of April of 1970 the average was 60mg 0il1/100g dry weight, indicating a
re-oiling (Blumer and Sass, 1972).

The pergistence time estimate of four years, as stated in the report,
has recently been revised to over five years (Pr. J. Teal, pers, comm.).

4)  Wreck Cove, Washington. On January 6, 1972 approximately 3,000 bbls.

of Navy Special fuel oll was released. Storm conditions broke the oil

into globules, which arrived on the beach in 5 to 30 centimeter diameter

gizea. The sole observation made was that in the upper tidal pools of

the rocky ledge the oil was trapped for several months (Clark and Finley, 1973).

5) Santa Barbara, California. Commencing on January 28, 1969 and lasting

several weeks a blowout released an estimated total of 33,000 bbls. of

oil, Samples taken in the sediments on March 31, May 1, and June 13, 1970,
showed no evidence of a reduction in oil content over this period (Straughan,
Vol. 1, 1971). 0Oiiwas found present in sediments as late as June 1970
(Straughan, Vel. 2, 1971). Straughan comments that the.effect of oil
spilled on the rocky intertidal stations appears less Important than other
environmental factors (i{.e., sand and substrate) (Straughan, 1973). The
author also believes that the sandy beaches recovered from oil contemination due
to the spill during the interval 1972-73, because chromatographic analysis
indicates that the oil found after this period was due to natural seeps.
However, weathered oil on the cobbles in the upper intertidal zome, found

in February 1973, was possibly linked to the spill (Straughan, 1973). This
data is evidence that oil may persist in sandy and rocky shores for at least
three years.

6) South West England: The Torrey Canyon. On March 18, 1967 an estimated

860,000 bbls., of Kuwalt crude oil was lost at sea. Large amounts of emul-

sifiers were used in the clean up operation. However, in a few areas
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emulsifiers were not directly used and oil was removed by the biological
and physical forces.

Brown o0il films were observed between tide marks on rocks several
monthe after the oil arrived. The splash zone was found to have blackened
oil on 1it, but after five months this was unobservable (Smith, 1968).

0il persisted longer on the sandy shore. At Mawgon Porth the following
conditions were observed (Smith, 1968):

1. April 22 - 1 to 5% oil; browvm layers visible.

2. May 11 - 0.42% oil, grey layers visible.

3. June 11 - general grevyness but no layers visible,

4, August 11 - 0.627%; grey layers apparent at 20 to 40 cm depths.
The impression of the investigators was that degradation occurred but at
a slow rate (Smith, 1968). 01l was found exposed on the sand beaches as
late as the spring of 1970, where it seems seasonal movements cf sand had
kept it buried (Spooner, 1971).

Hayle estuary on March 28 and 29 received an influx of oil and there
was no widespread use of detergents in this area. By mid August a black
oil rim was still visible on the vertical walls of the estuary and harbor,
but the authors claim it was reduced considerably due to weathering (Smith,
1968).

The data, mostly visual, indicate oll persistence in both the rocky
shore and sandy shore of at least several months.

7) Casco Bay, Maine. The spill occurred on November 25, 1963 releasing

between 20,000 to 25,000 bbls., of Iranian Agha-Jari crude. Colored
photographs, taken in 1970-71, were used to ascertain the presence of oil
residue on rocks in Simmond's lobster pound (Shenton, 1973). Samples of

both sediments and soft shell clams from July 20, 1972 show evidence of
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a high contamination level of ocil. Gas chromatograms show hydrocarbons
in the sediments of 6,800 ppm.

There were no other accidents in this area since 1963, yet
nearly ten years after the spill, oil was found in the sediment (Shenton,
1973), Chromatographic analysis shows this oil to match with the originally
spilt oil. '

In summary, data from eight different oil spill reports has been collected.
Estimates of the observed persistence of oil in the different habitats have been
made and are summarized in Figure 5.4-1, Care must be taken in interpreting
this figure. Many observations depend more on the length of study than on the
actual time oil remains in a habitat. Hence these are minimum residence
times of oil. In many cases the investigating reports terminated their
data collection before the oll was no longer detectable (either visually
or analytically). Thus the wide variation of estimates, e.g. Rocky Shore
shows a minimum time of weathered oil from greater than five months to at
least three years. This range is chiefly attributable to the length of
investigation, not to differences in persistence time of oil, Most impor-
tantly this chart provides some "feel" for the duration of petroleum per-
sistence in a habitat.

5.5 Alaska——Some Considerations

Because severe winters produce unusual extremes in the physical
parameters of Alaska, this section intends to make explicit some aspects
of the degradation of oil in relation to the physical parameters which
were briefly described in section 5.3.1. The Gulf of Alaska is, however,

a milder region and not ice-chocked as other waters of the northern Alaska

coast.
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Figure 5.4-1 (continued)

Mytilus californianus were described as having an oil coating after
six months; non-lethal effect {(Chan, 1973).

Analytical determination of oll (Scarratt and Zitko, 1972).

Author is referring to lagoon, which can be broadly interpreted as a
salt marsh (Thomas, 1973).

The authors cite visual evidence of o1l retained in rocky ledge by
false eel grass for several months (Clark and Finley, 1973).

Author’'s estimate after two years; amalytical methods; used #2 fuel
(Blumey and Sass, 1973).

Interpretation from statement made by authors; analytical techniques:
crude o1l (Straughan, 1973).

Visual observation and analytical. JP-5 and #2 fuel (Shenton, 1973).
Visual observation--emulsifiers used on crude (Smith, 1968}.
Teal, 1973.

Gas-1liquid chromatography analysis (Spocner, 1971).



Temperatures in northern Alaskan waters and coastlines are lower than
on the Atlantic coast, but those in the Gulf are comparable. The low tem-
peratures of win;er would greatly impede microbial degradation of oil on
the shore, despite the presence of psychrophillic bacteria. The microbes
of Cook Inlet are reported as being largely non-psychrophillic (Button,
1971). However, weathering does occur as observed by an increase in oil
density approaching or exceeding the density of sea ice in six to fifteen
days during the winter months {(McMinn, 1972). Some results would indicate

a loss of C,, or lower in about eight hours (season not specified) (Kinney,

12
et al., 1969). Moreover, "warm" oll accidentally iIntroduced into ice-

and snow-covered marine habitats would result in a sandwich effect of oil
between the two layvers. 0il in this state may remain relatively undegraded,
pertaps until the spring thaw, This o1l will not be readily absorbed by

the ice and snow mixture (McMinn, 1972). Evaporation would be reduced and
the toxic low-boiling aromatics would remain.

In the winter the amount of daylight is significantly reduced, affecting
photo-chemical oxidation. Clearly oil in bottom sediments, containing toxic
components, would remain longer during the colder months.

The highly turbulent areas of Cook Inlet can cause rapid dispersal of
the oil into small particles, to millimeter size within three or four days
(Rutton, 1971). This would probably enhance slightly the degradation of
oil.

In summary, weathering of oil in the Alaskan coast will not be faster
than in the north Atlantic, and most likely will be much slower.

5.6 Summary and Conclusions

The length of time o1l discharged in the marine environment persists

as distinguishable petroleum substances 1is strongly influenced by physical
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characteristics of the environments exposed to oil. Unfortunately, an
exact formula (model) for estimating residence times of oil in different
habitats does not exist nor can reliable estimates be made of residence
time from empirical data obtained from actual spill sites. Nevertheless,
several observations of available spill data are of limited use.

First, habitats composed of non-consolidated sediments demonstrate
pefsistence of oil for at least four or five years. In addition, evldence
in one case suggests a residence time as long as ten years (Worm and Clam
Flat). An expected minimum residence time of oil in unconsolidated sedi-
ments is between the ranges of four to ten years. Local conditions may
change such estimates several fold.

Second, hard substrate habitats, i.e., rocky shores, are characterized
by minimum residence time of two or three years except the case of the
mussel reef where the investigation terminated before the oil was removed).

Finally, one can expect a varjation of the rates of degradation among
habitats in different coastal regions. Evidence is scarce and only an
intuitive argument can be made for the relative differences among regions.
One plausible ordering of regions from highest degradation rates to lowest
is: Southern Atlantic, Northern Atlantic, and Gulf of Alaska, However,
this is only a hypothesis. Moreover, the degree of variation 1s even less
well defined.

In summary, oil discharged in the marine environment can be expected to
remain for several years minimum, particularly in the loose sediments,
Regional differencesdo exist but a recipe for determining these differences
is not at hand. Local conditions can also effect residence times of oil
and must be taken into account. However, the fact that the oceans are not
a sea of petroleum tydrocarbons indicates that ultimate mineralization to

002 takes place.
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CHAPTFR &
RESPONSE AND SENSITIVITY OF INDIVIDUAL ORGANISMS TO OTL

An assessment of ecological impacts of o0il depends on effects of
0il at all levels of biological organization--subcellular, cellular,
organism, population and community. This chapter considers collectively
subcellular, cellular and organism effects of oil as effects on individuals.
Population and community effects—=the effects of ultimate interest——of ap
oil spill result from the aggregate responses of individuals interacting
in the environment. If the sensitivity to oil of individusls is known
and the population and community dynamics of the system are understood,
then effects of hypothetical spills of oil can be deduced. For a parti-
cular spill, estimates can be made of concentrations of various hydrocar-
bons to which organisms are exposed. If exposures are within a range to
which individuals of various species are sensitive relative to the effects
described in section 6.1, an initial impact can be estimated. . Ensuing
population/community changes (recovery) can then be estimated, assuming
necessary data are available.

For the most part effects on individuals are exemplified in laboratory
and field toxilcity tests. Experiments are designed which attempt to
identify parameters such as the concentration of o0il, or some constituent
thereof, which is lethal to 50% of the test organisms within a specified

time period (typically called LC_,. data). Several authors have recently

50
reported extensive literature reviews summarizing the state-of-knowledge

regarding effects of oil on individuals (see for example, NAS, 1973 ; Moore,

et al,, 1973; Boesch, et al., 1974; Nelson-Smith, 1973; Clark, 1971). Additional
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extensive literature review has not Been undertaken in this study.
Results are described following the format previously reported by Moore,
et al. (1973). The reader is referred to the reviews cited above for
additional documentation of the effects of oil on individuals.
6.1 Types of Effects
Exposure of an organism to oll and the resulting response actually
invelves many complex cellular processes which cause certain physiological
and behavioral changes exhibited by the individual. Rather than attempt
to detail these complex phenomena, the overall effects of oil on indivi-
duals are lumped into five categories: 1) direct lethal toxiecity; 2)
sub—-lethal disruption of physiclogical or behavioral activities; 3) the
effects of direct coating by oil; 4) incorporation of hydrocarbons in
organisma which cause tainting and/or accumulation of hvdrocarbons in food
chains; and 5) changes in biological habitats (from Moore, et al., 1973).
Lethal toxicity refers to the direct interference by hydrocarbons with
cellular and subcellular processes, especially membrane activities, leading
to organism death, Sub-lethal disruption also refers to interference with *.
cellular and physiclogical processes but does not include effects causing
immediate death., The most important effects in this category are disruption
of behavior, especially feeding and reproduction. Although toxic effects
involve cellular level changes, histological analyses are rarely included
in toxicity studies. The effects of direct coating do not result from
biochemical interference of oil with cellular activities. The primary
effects are smothering or mechanical interference with activities such as
movement and feeding. The incorporation of hydrocarboms in organisms is of
interest for two reasons: 1) because of potential accumulation of peolycyclic

aromatic hydrocarbons (PAH), especlally carcinogens, in various marine
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organisms; and 2) tainting of edible organisms with hydrocarbons. Habi-
tat changes consist of changes in the physical or chemical enviromment,
which result in significant shifts in species composition and geographic

distribution in the region of concern.

An additional "effect" of o0il which can be hypothesized, but is
virtually unstudied, is a&aptive changes that may occur in the short-term
(less than one generation)--acclimation-—or in the lng-term (many gene-
rations)— genetic changes. Adaptive effects alter responses to the five
effects listed previously. IIf acclimation occurs, the sensiﬁivity of an
individual to effects of oil may decrease noticeably under prolonged or
repeated exposure, thereby increasing the individual's resistance to oil.
However, the poorly understood complex process of acclimation may involve
accompanying changes which further effect the individual'’s overall proba-
bility of survival in an unknown menner.

Genetic adaptation is actually a population level phenomena. Natural
selection operates to select those individual progeny in each generation
which are best able to cope with the environment as it exists. Persistent
petroleum~derived hydrocarbons in the environment may result over many gene-
rations in a population of more tolerant individuals. Again, however, this
poorly understood process may be accompanied by other changes, unrelated to
hydrocarbon tolerance--changes which may be desirable or undesirable.

Both of these adaptive effects are essential characteristics of living
systems., However, the processes are poorly understood in general, and vir-

tually unknown relative to their implication for responses to and effects
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of oil. However, it is clear they may play important rcles in determining
the ultimate effect of ¢il in marine environments.
6.2 Data Base Evaluation (taken from Moore et al., 1973)

Before discussing the documented responses of organisms to oil, it is
necessary to review the experimental procedures which provide the data base.
Although a substantial number of gstudies have been carried out, inmvestigat-
ing various biological aspects of 0il pollution, there have been no compre-—
hensive systematic studies of the whole problem as yet. In additionm, there
is a lack of standardization of the results of various studies. Accurate
measurements have not been made of the concentration and composition of
crude petroleum in solution, and the concentration and composition of frac-
tions of petroleum in the bodies of animals and plants tested., Thus, 1in
most cases, important pleces of information that provide the basis for com-
parison of different studies are missing. The complexity of petroleum
substances amplifies this problem and makes it difficult to accurately
analyze and specifically attribute biologically observed effects to even
a limited fraction of the crude petroleum. Finally, a number of physical
and biological processes significantly change the composition of crude
petroleum over time, adding further difficulties. Despite these problems,
there is enough information available to intelligently discuss various
effects, the specific sensitivities of representative bioclogical organisms,
and draw some conciusions about the overall effects of crude petroleum and
petrcleum products.

Laboratory experiments are designed to examine the biological conse~
quences of the controlled exposure of plants and animals to specific con-

centrations of pollutants. These experiments normally consist of a number



of animals or plants of a particular species (e.g. fish, shellfish, algae)
being placed in a large tank in which they are exposed to water or sea
water containing petroleum components. The organisms are alloewed to remain
in the tank for varying periods of time (from minutes to hours), and then
removed and, if still alive, they may be placed in non-polluted water for
varying periods,

Most studies evaluate the so-—called acute toxicity which is reported
as the dose required to kill a specified percentage (usually 50%) of the
test organisms during the exposure periocd. Various notations are used,
such as XLCy, XLD§ or KTHy, where X denotes the exposure peried in hours
and y denotes the percentage killed (XLDy is8 used in this report). For

example, SLD5 would be the dose required to kill 50% of the teat organisms

0
in 8 hours. In a few experiments, the organisms that survive the acute
effects are observed for longer periods of time (days to weeks) and long-
term toxicity and sub-lethal effects evaluated. Todd et al. (1972) and
Whittle and Blumer (1970) have reported the only extensive experiments
which deal explicitly with the influence of sub-lethal concentration on
behavior, survival, reproduction and community structure.

There are several severe limitations to the usefulness of experiments
such as thosge described above. Most importantly, no standard experimental
methods have been developed, especilally with respect to petroleum fractions
and media monitoring. The variability of composition, limited seclubility
and weathering petroleum products require that the éoluble fractions in the
media be measured during the toxicity tests. However, this is almost never

done. As a result, comparison of data is extremely difficult because

different petroleum substances and different methods of addition (surface
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film, emulsion, etc.) are utilized in different experiments. Furthermore,
the organisms are subjected to unnatural conditions and deprived of impor-
tant interactions with other species and other normal environmental condi-
tions.

Concentrations of hydrocarbons in the tissues of test organisms,
before and after the exposure to oil, are rarelv determined. The gas
chromatography and spectroscopy equipment used in analyzing hydrocarbons
is expensive and relatively complex, thus inhibiting widespread application
to oil toxicity studies. Because these analytical techniques have not been
extensively used as yet, little data are availlable relating to background
concentrations of hydrocarbons in the enviromment and in the tissues of
individual species.

Even 1if hvdrocarbon concentrations in animal tissues are measured after
exposure, they are often reported in a form which makes comparisons with
other studies difficult. Hydrocarbon concentrations are reported in the
literature as grams per kilogram of dry weight tissue, or grams per kilogram
of wet weight tissue, thus leaving to the reader the task of determining
what percentage of the test organism is water. Frequently, the petroleum
additive is described in the literature merely as "oil", "light crude oil".
"mineral oil", etc., omitting the important information about composition
especially soluble fractions.

Due to these shortcomings, the primary value of laboratory experiments
is to establish order of magnitude boundary conditions on lethal toxicity.
That is, concentrations of various substances can be identified which, if
significantly exceeded, have a high probability of killing the organism of

interest.
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Only 2 limited number of experiments on plants and animals in the
field have been undertaken. They consist of spraying or pouring crude oil,
weathered crude oil, or petroleum products on specific areas in salt
marshes or various coastal areas. Changes in fauna or flora are noted for
various periods after their exposures. Spraying may be repeated at dif-
ferent time intervals over a period of months or years, The results are
normally described as quantitative changes of numbers and density (number
of organisms per unit area) of animals or plants present. In general, fleld
experiments have the advantage of taking place in 2 '"natural” habitat, thus
allowing complex effects rélated to survival in an ecosystem to be evaluated.
However, they are less quantitative and controlled. Frequently, the concen-
tration of oil applied per unit area is not known precisely. In addition,
although the experiments take place in a natural getting, they may be so
restricted in size that significant effects are not observed. A number of
variables, such as predators, weather conditions, and physiochemical changes,
cannot be controlled, and frequently are not noted in the literature. Major
salinity changes because of runoff from heavy rains occurred in the Santa
Barbara Channel at the same time as the oil spill. It is difffcult to
distinguish between deaths attributed to "natural” changes and those due to
oil.

Rather extensive data are available from studies following actual acei-
dental spills, Unfortunately prior examinations of the flora and fauna
affected is usually not available., Typically these studies describe the
organisms remsining after the spill, but do not include estimates of the

concentration of hydrocarbons to which the organisms were exposed. Often,
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dead organisms are counted, although only rarely are hydrocarbon concen-
trations in their tissues measured. The actual impact of a spill is
highly dependent on weather conditions, time of year, local hydrography
and physiography, and the area's previous history of 0il spills. The
length of time between release of the oil and its coming ashore is rarely
directly stated In the literature. However, the extent of weathering

that the slick has undergone can usually be ascertained by closely ex-
amining the description of the accident causing the spill which usually
precedes discussion of biologlical effects in thé article,

6.3 Sensitivity of Individual Organisms——A Review {adapted from Moore et
al., 1973)

Assessments of the various effects of oil on individual orpganisms
is summarized in the paragraphs below. For each of the five classifications
of effects (see Section 6.1) data reported in the literature is summarized
for several organism categories including: flora (phytoplankton, kelp, marsh
grasses, etc,), pelagic fauna (finfish, crustaceans, larvae, etc), and ben-

thic fauna {(mollusks, crustaceans, etc.).

6.3.1 Lethal Toxicity

The data summaries for toxic responses (Tables 6,3~1 through 6.3-8, from
Moore et al., 1973) follow a standard format. For each organism or group of
similar organisms the tables specify the common and scientific names, the type
of experiment (laboratory, field or actual gpill incident), the substance and
amount used or spilled, an estimate of the actual amount of aromatic deriva-
tives in solution, the test duration, the reported response, a reference ci-
tatiocn and general remarks. Because toxic responses result almost exclusi-

vely from the soluble fractions of oil, it is important to determine the con-
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centratien of soluble hydrocarbons. In almost all reported cases this
information 1s not provided. The estimates compare a variety of petrcleum
substances, and from the description of experimental methods given by the
original authors. Soluble paraffin fractions are not included, because
only the very low bolling fractioans (less than ClO) are toxic and even
these only in nearly saturated solutions (Goldacre, 1968; Nelson-Smith,
1970) which would not be obtained under test or field conditions with
petroleum mixtures.
6.3.1.1 Flora

Table 6.3-1 gummar®zes the toxic response of marine flora to hydro-
carbons, Phytoplankton senasitivities vary over a wide range. A few gpeciles
are apparently sensitive to concentrations of soluble aromatic derivatives
(SAD) as low as 1 ppm. However, most specles are unharmed by concentrations
of 100 ppm or higher. Kelp are affected similarly. Note that Wilber (1968)
reports no effects on kelp by the paraffin hexane (10 ppm), but significant
effects of the aromatics benzene and toluene (10 ppm). Kelp and similar
macrophytes can be expected to be reasonably resistant due to excretion of
mucous substances which coat the stems and fronds of the plant, preventing
damage. Most data for the response of marsh grasses deal with effects of
coating. However, it is reasonable to assume a toxlec response to SAD con-
centrations of 10-100 ppm. Baker (in Cowell, 1971) provides a summary of
the effects of oils on plant physiology. The long-term impact of spilled
0ils on plants depends on both toxic and coating effects, frequency of
coating, and on the time of year.

6.3.1.2 Pelagic Fauna

For the purpoaéds of discussing 0il effects on individuals, pelagic

fauna are divided into finfish, larvae of all marine organisms (except those
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few with benthic larvae) and pelagic crustaceans., Data on finfish toxi-
city (Table 6.3-2) are not extensive and onlv a few species indigenous to
the Gulf of Maine have been used In experiments. The data are not very
conclusive, but an estimate of a toxic threshold of 5-50 ppm SAD seems
reasonable, especially in light of the data reported by Wilber (1968) .
Because finfish are hvpothesized to avoid contaminated areas (Nelson-Smith,
1973), there has not been a strong interest in the toxic response of these
organisms.

The toxic effects of oil on larval stages of many marine organisms
have been much more extensively studied (Table 6.3-3). Several investigators
report that larvae appear to be 10-100 times more sensitive than adults
(Mironov, 1968; Kuhnhold, 1970; Cormer, et al., 1968). Typical concen-
tration of SAD causing lethal toxicity are .1-1 ppm, However, at the lower
concentrations death may be a delayed response. Typlcally the larvae may
develop abnormally, leading to death several weeks after exposure. In a
non—-laboratory environment,lsuch maldeveloped individuals are much more
susceptible to predation, competition and other secondary effects. It is
also interesting to note that larvae tend to be more sensitive than eggs.
Apparently, this is due to the protection afforded the embryo by the
chorion.

Table 6.3-4 summarizes the sparse data reported on.the toxicity of
pelagic crustaceans (shrimp and copepods). The critical concentrations may
be somewhat lower than those for fish and 1-10 ppm SAD is probably the
lower threshold. Smith (1968) suggests that because of the small size
(a few millimeters) of maﬁy pelagic crustaceans, toxicity may be a function

of size. That is, the larger individuals are possibly more resistant.
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6.3.1.3 Benthic Fauna

The benthic fauna are divided into four categories: gastropods
(snails, limpets, etc.), bivalves (clams, etc.), crustaceans {(shrimp,
lobstérs, etc.) and all others (worms, anemones, etc.). Apparently
gastropods are the most resistant and crustaceans are the most sensitive.

Most gastropods studied (Table 6.3-5) indicate a rather high resistance
to hydrocarbon toxicity and periwinkles (Littorina littorea), a common
intertidal snail, are apparently very resistant. The critical concen-
tration may be 100-200 ppm or more, Limpets (Patella vulgata) demonstrate
the only significant deviation and appear to have a critical threshold
concentration of less than 5 ppm. The relatively high resistance of most
gastropods may be due to secretion of a mucous substance (Shelton, 1971).

Bivalves, including oysters, clams, cockles and mussels are moderately
resistant to oil (Table 6.3=6). The ability to close their shells and seal
off the amblent water mass acts as an effective protection mechanism.
However, this closed condition cannot be maintained indefinitely and, in
fact, cockles tend to '"gape" making them more susceptible (Simpson, 1968).
Typical critical concentrations fﬁr most bivalves are 5-50 ppm SAD.

Both benthic crustaceans and other miscellaneous benthic organisms
(Tables 6.3~7 and 6.3-8) are apparently fairly sensitive to SAD. Threshold
concentrations appear to be 1-10 ppm of SAD. Burrowlng organisms may also
be threatened by alterations in the substrate texture and structure.
6.3.1.4 Summary of Toxicity Data

Moore, et al. (1973) propose an aggregation for toxicity sensitivity

by grouping organisms as shown in Table 6.3-9, Although this level of
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TABLE 6,.3-9
(adapted

Summary of Texicity Data
from Moore et al., 1973)

Class of Organisms

Estimated Concentration (ppm) of
Soluble Aromatics Causing Toxicity

Flora
Finfish

Larvae
(All Species)

[Pelagic Crustaceans

Gastropods
(Snails, etc.)

Bivalves
(Cysters, Clams, etc.)

jBenthic Crustaceans
(Lobsters, Crabs, ete.)

ther Benthic Invertebrates
i(Worms, etc.)
i

o

10-100
5~50

0-1-100

1-10

10-100

1-10

1-10




differentiation may be hypothesized and is convenient, it is difficult
to justify on the available data, which contains large levels of uncer-
tainty. TFurthermore, no such differentiation can be made for the other
categories of oil effects.

An alternative aggregation adopted herein is to consider only two
categories of marine organisms--adults and larval stages. The available
data (see, in addition to the foregoing taken from Moore, et al., 1973;
NAS, 1973; and especially Anderson et al,, 1973) indicate that for these
two groupings direct lethal response can be expected in most adult marine
species from exposures to 1-100 ppm total soluble aromatic hydrocarbon-
derivatives for periods of a few hours or less and that larval stages
are apparently sensitive to conceﬁtrationa as low as 0.1 ppm SAD.

6.3.2 Sub-Lethal Effects on Behavior (adapted from Moore, et al., 1973).

Most marine organisms depend upon a complex set of behavioral char-
acteristics to maintain a normal life pattern. Many of these behavioral
patterns, especially feeding and reproduction, involve communication based
on chemical cues called pheromones. Chemical communication has been ex-
tensively studied in insects, but only recently has significant attention
been given to marine animals., However, sufficient information is available
to draw tentative conclusions regarding the possible effects of oil on
chemical communication,

Early studies by several investigators (see Hasler, 1970) focused on
migration habita and territory recognition by fish, especially salmon.
More recent work has focused on feeding, reproduction and social behavior
in fish and lobsters (Todd, et al., 1972). In addition, Whittle and Blumer

(1970) have investipated the role of pheromones in predation by starfish.
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Extrapclation of the results of these laboratory experiments to natural
environments is extremely difficult (probably more so than toxicity tests).
The objective of the experiments is to assess behavioral characteristics,
but the organisms are placed in very "unnatural" environments,1 which likely
disrupt behavior in themselves. 1In addition, the chemical clues are appa-
rently extremely subtle and occur in very low concentrations, which makes
their identification difficult., Introduction of foreign substances may in
fact block these communication signals, but the foreign chemicsls may alsc
induce other behavioral responses, only indirectly disrupting normal com-
munications.

The most remarkable part of the utilization of pheromones is that
they are recognized at extremely low concentrations. Whittle and Blumer
(1970) found starfish react to oyster extracts in concentrations of parts
ner billion, Apparently, gome marine animals have extremely sensitive
olfactory and taste organs. More remarkable is the specificity of some
animal's response, differentiating among a myriad of compounds in sea wa-
ter.

One of the most significant set of studies has been carried out by
Todd, et al. (1972), examining the bullhead fish which has an extremely
complex set of social behaviors., The bullhead i8 capable of differen-
tiating between species and can even recognize individual fish--meking
paring relationships possible. Many fish which live in schools have no

individual relationships or social structure. However, the bullhead lives

1Todd. et al, (1972) have attempted to alleviate some of these proﬁlems
by using large aquariums and several species of organisms simultaneously.



in communal life with clear social functions among dominant and subordinate
individuals.

Todd attributes this highly complex behavior to subtle chemicel clues.
He has found that the bullhead brain has enlarged olfactory (smell) lobes
and performs a highly integrative function for the senses., Other fish have
less developed olfactory areas, and less complex behavior. He concludes
that complex behavior is related to highly developed capability of smell,
although taste is basically utilized for feeding function. To test this
hypothesis the olfactory and the taste organs were destroyed and the bull-
head's behavior analyzed. The results show that the bullhead suffered marked
loss of the capability of mocial behavior (mates were attacked and unrecog-
nized) when the olfactory area was destroyed. This indicates significant
dependence on chemical clues to maintain complex behavior.

In experiments with lobsters, Todd found that lobsters were attracted
and then repulsed by soluble aromatic components of kerosene but that
straight chained paraffins had no noticeable influence., Kerosene and the
branched and cyclic paraffins induced searching and feeding behavior.
Kerosene, polar aromatics, and branched cyclic fractions alse initiated
agitated grooming behavior. Conceivably, lobsters could be attracted to
an oil spill because of the polar aromatic component and the other compo-
nents of crude oil could disrupt social organization and individual beha-
vior patterns, or even cause lethal or sub-lethal effects from exposure.

Todd has postulated an inverse relationship between physiological
toughness and behavioral complexity, i.e., the more complex the behavioer
patterns for a fish, the lower the adaptability (resistance) to stress

(pollution). The most complex behavioral species will have difficulty
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producing highly resistant strains in a stressed area, i.e., the adap-
tation of these species will take place but not as successfully as spe-—
cies with simpler (less complex) behavior patterns. Moreover, Todd ex-
presses the proposition that there is a relationship between increased
behavioral complexity and ecological complexity. The most complex be-
havioral species appear in the most complex ecosystems. Therefore he postu-
lates the vulnerability of an ecosystem to stress is related to behavio-
ral complexity, il.e., there is increased vulnerability of an ecosystem
with increasing numbers of behaviorally complex species which tend to appear
in more complex ecosystems.

The validity of these conclusions is uncertain without more data.
It is evident that individual species dependent upon many chemical clues
to maintain complex behavior are particularly vulnerable (if Todd's ex-
periments can be generalized), but there is no indication that they are
less able to adapt over time to envirommental changes than behaviorally
less complex species. In fact, population and community level survi-
val may be enhanced due to behavioral complexity. A mature ecosysten
typically contains behaviorally complex species and 1is usually more di-
verse than juvenile ecosystems. Although it may contain a larger number
of individually vulnerable species, the mature ecosystem, because of its
diversity of animals and plants, could be better able to withstand stress
than less mature and less diverse systems.

In reviewing the field of chemical communication in marine organisms,
and assessing their vulnerability to crude oil a few conclusions can be
drawn, However, they must be tempered with the realization that the field

is not extensively developed and most of the experiments are preliminary.
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Field conditions may considerably alter behavioral responses and
circumstances of exposure, thus either enhancing or diminishing effects
while revealing new problems. Moreover, higher boiling hydrocarbons have
not bheen used in any experiments, and it is this portion of crude oil
that 1s the long term contaminant of the environment.

Apparently, disruption can occur from relatively low concentrations
of petroleum substances (10-100 ppb). However, the toxic properties of
the low boiling component may be more important than the chemical communi-
cation disruption., More importantly it is unclear whether the behavioral
changes that might occur c¢an lead to permanent damage to individuals and
populations.

The extent of chemical communications in marine animals is substantial
and plays an essential role in behavior. Although the present evidence
for the effects of crude petroleum on chemical communication is li-
mited, the long term effects related to successful adaptation or sur-
vival could be serious, Any introduction of large quantities of hundreds
of chemical compounds should be a cause for concern, requiring both accel-
erated experimentation examining possible consequences and a2 sense of
caution in decision-mzking regarding any‘new possible modes of release into
the marine enviromnment.

6.3.3 Incorporation of Hydrocarbons

Tainting and accumulation of hydrocarbons in organism tissues occur
in many, if not all, marine species. Eséentially any aquatic organism
can be expected to equilibrate chemically with its surrounding media. TIf
the media contains even low (ppb) concentrations of hydrocarboms, these

substances may be injested and accumulate in varjous tissues. For example,
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Burns and Teal (1971) have shown that oil entering a salt marsh can be
found in virtually all organisms examfined. If exposure is terminated,
depuration occurs (Anderson, et al., 1973) to some extent in at least
gome bivalves and probably other specfes, However, this is a little
studied phenomena for other than commerically important bivalves. In
addition, Blumer (1970) reporte data indicating only limited depuration
occurred in bivalves exposed to oll continuously for several months
following the West Falmouth o0il spill, Numerous other investigators
have reported data relating to tainting (Blumer and Sass, 1970; Lee,

et al,, 1972; Mackin, 1961; Nelson-Smith, 1971; Tarzwell, 1971; Wilder,
1970; and Sidhu, et al, 1970).

6.3.4 Coating and Habitat Alteratiomn

Coating effects, which are principally associated with the higher
boiling fractions of 0il (weathered oil), are primarily a problem for
intertidal sessile species, plankton and diving birds. Mobile organisms
can normally aveid exposure (Nelson-Smith, 1973) and sub-tidal benthic
species are protected because the oil does not occur as a film subtidally.
The necessary thickness of coating to cause mortality 1s not readily
definable. However, most species exposed to a coating of weathered crude
oil are likely to ﬁ; effected, A more detailed discussion of coating
problems appears in Moore et al. (1973).

The effect of habitat alteration is, of course, to prevent species
normally present in or on a substrate from inhabiting the area. Intertidal
and sub-tidal benthic species are therefore of primary interest. The amount
and composition of oil neceasary to prevent a species from utilizing =
substrate 1s largely unknown, In light of available toxicity data, the
presence of low to medium boiling point aromatic hydrocarbons as concentra-

tions as low as 10-100 ppb may be chemically insulting to virtually all

62



relevant species. The presence of higher boiling, insoluble materials
may or may not effect a species depending on the organisms reliance on the
specific physical nature of the substrate and the degree to which this

i1s altered by the presence of oil.

Species dependent on a substrate only for passive support, that is,
those simply lying on the substrate, may be 1little affected by the
physical presence of oil., However, species living in the substrate (infauna),
or otherwise more than passively dependent upon the substrate can be ex~
pected to be more vulnerable to this effect. Unfortunately, there is
virtually no data on the relationship between the amount of oil present
and the degree of suitability of the substrate for various species.

In light of the discussion in Chapter 5 habitat alteration effects
may persist over time periods of 3-10 years or more depending on the
specific habitat exposed.

6.4 Sensitivity of the Selected Species of this Study

A principle characteristic of this study is analysis of particular
selected species. However, the foregoing section (6.3) suggests that
available data is insufficient to reliably identify sensitivities of even
gross groupings of species to various effects of oil. As further illus-
tration of this problem Table 6.4-1 summarizes data reported on effects
of oil for the particular species selected for analysis in this study
(see Chapter 4). Although specific references have not been cited in
Table 6.4-1, the literature covered includes all of that previocusly cited
in this chapter, including the extensive reviews by Nelson-Smith (1973),
clark (1971), and NAS (1973). In short a large body of literature has

been searched. It is immediately apparent that relatively little is
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TABLE 6.4-1

Selected Species for Which Some Datgy .on
Effects of 0il Have Been Reported

fhndalus Spp.
L

- Uptake
5 and Habitat
Species Cormon Name [Lethal |Sublethal | Coating | Tainting {Change

lBIRDS:
Rigsa tridactyla kittivake /
FISHES:
Alosa spp. | alewife Y
Clupea harengue i herring Y
Fundulue heteroclitus : mummichog v
Gadug morhua . atlantic cod Y
| Micropogon undulatus croaker 4
hbrone saxatilis striped bass 4
Peeudopleuronectes winter flounder Y/ v
americanus
CRUSTACEANS :
Acartia spp. zooplankter Y
Ampelieca vadorum amphipod Y : Y
Balanue balanoides acorn barnacle ' )
Calanue spp. zooplankter 4 1 Y
Crangon spp. shrimp Y
Emerita spp. mole crab Y
Homarus americanus american lobster] Y
.fugurus longtearpus hermit crab Y Y

shrimp Y

1 - A check (v) in the table does not imply extensive, valid data is available for
the particular effect on the specified species, only that some data has been

reported.

2 - Only species given in selected specles list of Chapter 4 are included here.

(CONTINUED ON NEXT PAGE)




TABLE 6.4-1 (Cont'd)

{ - Uptake
and Habitat
; Common Name Lethal | Sublethal | Coati Tainting| Change
LOLLUSKS:
. Aquipecten trradians }scallop Y v v
Crassostrea virginiea |virginia oyster|{ 7 v v/
Donax  emeritus coquina clam 4
hferaenaria mercenaria Ynorthern quahog 4
?!o&iolus demiesus horse mussel / 4
TMy::z arenaria | soft-shell clam 4 Y Y
i'r!yi:'ilus edulie Eedible mussel o v ' 4
ittorina littorea gperiwinkle Y v v

]Nassar'éus obsoletus { common mud snail 4
}Thais lapillue , dog whelk -y Y/
HORMS: :
#renicola marina ; lugworm v/ v/ /
j;rlfereis virens ?clam worm ol I
%’troblospio benedicti ;iploychaete 4 ;
3 H : ‘_
OTHER ANIMALS: : ‘ |
Eﬁ‘!stez'*ias vulgaris i starfish : Y I
! Strongylocentrotus sea urchin / ! i / : ;
i droebachienais ‘ ‘

A
PLANTS : ?
)Juncus gerard? marsh rush ' i .
Spartina alterniflora }marsh grass v i 14 . !
Spartina patens cord grass Y j x 5
Laminaria spp, kelp / |




known about the effects of oil on a species-by-species basis., The pro-
blem Is not a product of the particular species selected. In fact, those
species listed in Table 6.4~1 include some of the most frequently studied
species. In addition, even though we undoubtedly have not reviewed every
publighed article on the subject, it is extremely unlikely that the large
gaps In information can be filled from lesser known, obscure publications.

Finally, and most importantly, the summary presented in Table &.4-1
does not indicate the limited nature of the data that 1s available. A
check (¥) in Table 6.4-1 merely implies some, no matter how little, data
have been reported. 1In fact, as discussed in Section 6.3 much of the data
that is availabhle fs of questionable value. As a result, some amount of
aggregation {s necessary to make an assessment of individual sensitivities
possible. However, the dangers of lumping and generalizing must be expli-
citly kept in mind.
6.5 Summary

In the preceding sections the biological effects of 01l on individual
organisms have been reviewed. Several important considerations are appa-
rent from this review:

1. As many authors have noted, the soluble aromatic fractions of
oil pose the most seriocus environmental problems. Although low molecular
weight (10 carbons or less) alkanes can cause narcosis, the concentrations
required to induce such responses are extremely high and would not occur
from an oil spill. |

2. Concentrations of water-soluble aromatic derivatives (aromatic and
naphtheno-aromatics) as low as 0.1 ppm may be toxic to larvae of most ma—
rine organisms,

3. Most adult marine organisms are sensitive to soluble aromatic
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derivatives in concentrations of 1 ppm and lethal toxicity typically oc-
curs at concentrations of 10-100 ppm.

4. Chemical communicafions play an important role in the behavioral
patterns of many marine organisms. The full implications of disruption
of these communication patterns remain uncertain, as does the exact me-
chanisms of disruption. However, concentrations of soluble aromatic deri-
vatives in the range of 100-100 ppb may cause significant problems.

5. The incorporation of hydrocarbons in the tissue of marine or-
ganisms can apparently result from very low ambient concentrations in wa-—
ter, If the contamination in the water is short-lived and concentrations
in water are not too high, self-cleansing of the organism may be nearly
complete. However, the maintenance of undesirable water conditions over
longer time periods may result in permanent contamination of the organism.

6. Weathered oil may lead to coating, : in the intertidal
zone, of both organisms and substrates. If coating is heavy, the effects
may be essentially permanent, smothering individuals and/or altering sub-
strate textures. Frequency of coating is Important and areas subject to

chronic discharge may accumulate the oil, leading to longer term problems.
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CHAPTER 7

POPULATION AND COMMUNITY RESPONSES TQ OIL

7.1 Introduction

Effects of oil discharges resulting from offshore petroleum devel-
opments on populations and communities in marine ecosystems is of ulti-
mate primary interest, Lethal and sub-lethal effects on individuals,
such as discussed in Chapter 6, take on significance (except for the
specific organism(s) affected) only in so far as changes are detectable
in a population or assemblage of populations (community). Population
size and age-distribution are principal measures of a species as a re-
source in an area. Because these population characteristics depend on
the aggregation of individual births, deaths and migrators in the area
of interest, population sensitivity to oil may differ significantly
from that of am Individual. For example, a population widely dispersed
spatially consisting of very sensitive individuals may also have a high
reproductive rate and effective dispersal mechanism, and therefore may
be relatively resistant to detectable effects of ofl spills. That is,
a population may have an effective mechanism (strategy)--high birth and
immigration rates-—to counter an unexpected high death rate. In order
to predict population level effects of cil, it is necessarv to trans-
late individual responses and sensitivities into changes in population
birth, death and migration rates which exist in the absence of exposure
to e¢il. This chapter attempts to analyze this essential, but little-
studied problem. The even more difficult problem of translating popu-
lation level effects into community responses is treated briefly, in the
context of interspecific relationships associated with specific popula-
tions (selected species). However, comprehensive community models and/
or models of community diversity-—number and composition of species——
are not developed.

7.1.1 Acclidental and Continuous Discharges

Development of offshore petroleum resources may result in two dis-
tinctly different types of oil discharges, each with significantly dif-
ferent biological effects. One type is accidental spills--discrete events

causing sudden, large perturbations of the environment,
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Three envirommental conditions associated with accidental spills can
be identified: pre-spill "equilibrium," immediate post-spill impact, and
recovery from impacted conditions back to an "equilibrium'" condition. Pre-
spill "equilibrium" is & dynamic condition of a habitat in which species'
numbers, population densities and age-structure remain within identifiable
bounds. Population birth, death and migration rates are in balance over
time periods measured on the order of years. The immediate potential im~
pact of a spill is an immediate but short-lived (by definitfon) increase
in population death rates. Magnitudes of mortality depend on the nature
of the exposure and semsitivity of individuals exposed (Section 7.2). Re-
covery from an accidental spill involves dispersion and degradation of spilled
0il and return of populations to "equilibrium" conditions (Section 7.3).
During recovery population birth, death and migration rates are, by defini-
tion, not in balance. The time period necessary for recovery is a critical
parameter in determining the ultimate envirommental effects of an acciden~
tal spill (Section 7.4).

The other genre of discharge is continuous, or nearly continuous, re-
leases of oil to the enviromment (Section 7.5). In general, continuous
spills are effluents from sources such as oil-water separators, consisting
of low concentration, oil-contaminated water which do not elicit the im-
pact-recovery response of accidental spills. Such releases do not have dra-
matic sudden impacts, but instead may cause subtle changes in birth, death
and migration rates which are only differentiable from natural population
fluctuations after long time periods with many years of data.

0il deposited in inter- and sub-tidal substrates following an acci-
dental spill may be a continuous spill source due to slow and continuous
release of oil fractions from the sediments (see, for example, Thomas, 1973).
However, the most significant continuous spill sources are intentional dis-
charges from operations necessary for petroleum resource development. Re-
gulatory authority exists with EPA to control discharges of waste streams
containing low concentrations of hydrocarbons and other pollutants asso-—

ciated with petroleum development activities.

7.1.2 Population Models and Data

Ostensibly the objective of the ensuing sections is to develop mo-
dels useful for predicting population effects of hypothetical accidental
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and continuous spills. Although mathematical models dynamically des-
cribing population density and age-structure and embodying birth, death
and migration rates as a function of oil exposure are most desirable,
several sources of uncertainty and informatlon gaps prevent development
of such models.

Chapter 6 documents the many levels of uncertainty regarding res-
ponses and sensitivities of individuals. Correspondingly, useful func-
tional relationships between birth, death and migration rates and oil
fraction concentration are not available. Moreover, as discussed in
Chapter 4, relatively little data exist describing natural birth and
death rates for even the well-studied species selected for this study.
Furthermore, virtually no data exist from which birth, death and migra-
tion rates during recovery can be deduced. Observations of recovery from

the Torrey Canyon, Tampico Maru, and West Falmouth spills provide some

indication of recovery patterns, but estimates of population birth, death
and migration rates are not extractable from the data.

In the absence of previous useful models and reliable data to de-
velop and verify new models, several options are available. On one ex-
treme further analysis of the problem can be ignored.. On the other ex-
treme, theoretical, unverified mathematical models can be developed and
applied. A middle ground, pursued herein, consists of formulation of
conceptual, largely qualitative models which have some theoretical ba-
sis, but are not thofoughly‘verified. The results provide some fnsight to
the population level problem, indicate more precisely present data needs
and establish a departure point for developing better models. Many im-—
plicit and explicit assumptions are made, some of which are convenient
but known to be unrealistic., The results must be viewed with due cau-

tion.

7.2 Accidental Spill Model: Initial Impact

An idealized conceptualization (model) of the Behavier eof total po-
pulation density effected by an accidental oil spill is shown in Figure
7.2,1, Two distinct problems are identified: initial impact and recovery.
In Section 7.3, models of recovery for various types of species are pre-

sented. In this section a model is presented of Inltial impact of an ac-
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cidental spill on a population.

‘The initial impact of oil on a2 portion of the enviromment depends
on the nature of oil exposure and the sensitivities to that exposure of
individual organisms present in the {mpacted zone.

Actual o1l exposure resulting from a spill is characterized by se-
veral parameters:

1. 0il composition - the relative and absolute amounts of various
hydrocarbon fractions; of particular interest is the concentra-—
tion of lower boiling (<250°C) aromatic hydrocarbona.

2. 0il amount - actual volume of oil impacting an area; thickness
and areal extent of slicks, patches, etc,

3. Degree of coverage - geographical; “he percentage of area
covered with oil and distribution of oll coating within the area
of interest,

4. Meteorologic/oceanographic conditions - sea conditions - waves,
surf, etc, - important in determining the extent to which oil is
mixed in the water column and into sediuments. *

Given the large biological uncertainties, it is unrealistic to attempt
to definitively describe a particular hypothetical spill in terms of the
above parameters. However, as described below, broad categories of defi-
nition such as weathered/unweathered are useful in obtaining rough esti-
mates of possible initial impacts.

Based on the discussion in Chapter 6 of sensitivity of individual or-
ganisms to oil, the following approximate characterization is made:

1. unweathered crude oil, as defined in Chapter 5, can be assumed
to contain sufficlent low boiling toxic fractioms to cause mor~-
tality in most marine organisms exposed to the slick;

2. coating by the main body of a slick or by patches of weathered
oil is likely to kill most sessile species and to alter any sub-
strates covered; |

3. sub-lethal effects due to accidental spills cannot be accounted
for in most situatioms;

4. hydrocarbon incorporation is likely to occur in most species,
especially filter feeders, from exposure tc all but residual

fractions. The degree of incorporation of tarrv, residual sub-

stances is unknown.
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The percentage of a population within a habitat or region killed or
otherwise effected by a spill depends on the parameters described above.
Although estimating such percentages is extremely difficult, if not impos-—
sible ~ at least the problem is bounded by two real cases: the no kill
situation - zeré recovery time; and the 100% mortality situation - maxi-
mum recovery time required. For any case expected to be in between these
extremes, i.e., partial mortality, definition of initial impacts is com-
plicated because both reduction in population size (density) and altera-
tion of age-structure must be accounted for. Reallstic estimates of such
changes are virtually impossible to make, and analysis of subsequent re-
covery is equally difficult. For the most part then, recovery analysis
which follows is confined to worst case situations of 100% mortality.
Uncertainties aside, this is a useful exercise, establishing a worst case

condition.

In Chapter 8 the foregolng discussion serves as a basis for esti-
mating inftial impacts of specific hypothetical oil spills cccurring at

platforms and termipals.

7.3 Accidental Spill Model: Recovery

The total recovery process can be partitioned into two overlapping
* time periods: 1) the time required before the physical substrate 1s suit-
able to permit recolonization; and 2} the time required for a species to
recover in terms of density and age-distribution. The former problem of
0il persistence is discussed in Chapter 5. The latter problem is discus-
sed below.

Four classes of recovery or recovery ''strategies' are defined based
on the dynamic processes contributing to population return to "equilibrium."
In only one case can recovery time be estimated. The other three cases
are qualitatively discussed and important features of recovery for such
species identified. 1In Sectipn 7.4 each selected species for each habi-
tat in each sub-region (Chapter 4) is placed in one of the four recovery

classes and then overall habitat recovery is conmsidered.

7.3.1 Analytical Framework

The total number of species (populations) within a single habitat is

unworkably large for a species~by-species treatment in this study. There-
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fore, selected species have been singled out for study (Chapter 4). An-
alysis of the response to and recovery from oil by these species, within
a particular habitat, is arbitrarily assumed to be sufficient to gain in-
sight to recovery processes and to compare biological vulnerability of
various habitats and regions to oil spill impacts.

A thorough approach to the recovery problem would require an under-
standing of the interrelations among various species as well as the in-
ternal dynamics of each population. As pointed out in Chapter 4, little
of the necessary quantitative information is available to assess intra-
or inter-species phencmena. Such fundamantal population level data as
natural population density, average fecundity, in-gitu age-specific mor-
tality, and longevity, and such inter-species level data as identity and
intensity of predators, competitors, and commensals are very hard to come
by. It 1s quite apparent that in order to escape the realm of guesswork
in the future, much basic biological research is necessary.

However, at least some date on many speciles are available. The
authors have deemed it appropriate, therefore, to postulate general-claé%es
of recovery strategy, classes with sufficiently broad bounds that even a
sketchy description of a species' characteristics will suggest its class
of recovery strategy. These classes are distinguished by their different
modes of colonization and expansion in unsettled, hospitable habitats.
Fach class requires a different form of analysis, a format which will be
applicable to all member species in that class.

The various classes of recovery (i.e., colonization) strategy which
are identified are presented diagrammatically in Figure?.S-l.. The sche~-
matization Is inspired by the work of Gunnar Thorson, especially Thorson
(1950), in which he discusses the various larval life histories of ma-
rine organisms. This discretization is justified by the conceptualiza-
tion of recovery processes presented below.

There are four events which comprise the recovery process of a popu-

lation whose ranks have been reduced by oil (or any other catastrophe).
1. Recovery begins with survivors. Some fraction 0<f<1 of the ori-

ginal population within boundaries of interest survives the spill, (Note
that f may be zero——the 100X mortality case,)

2, Colonizers enter recovery area. Immigrants, usually larvae or

other new-born, disperse in their own particular manner into and within
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the habitat. Two classes of dispersal--wide and non-wide-~are identified.

Wide dispersal (WD) speciles are defined in the sense that if the entire
spatial extent of a species' pre-spill habitat is (equally) accessible

to re~invading members of the species, then the species is 2 wide dis-
persal species. Specles whose dispersal is limited, so that areas of a
habitat under consideration cannot be reached by colonizers in a single
reproductive season, are considered non-wide dispersal (NWD) or incre-~
mental growth species (Section 7.3.4). One can imagine that the range

of a non-wide dispersal strategist will expand incrementally, "creeping"
outward from a pocket of survivors or inward from the edges of the spill.
It is evident then that both spatial and numerical recovery must be
tracked in the NWD species recovery. This contrasts with the WD species
case, where only temporal recovery need be predicted and spatial recovery
is assumed uniform (in the sense that all available sites are filled with-
out regard to spatial location. Of course, organisms will not recover in
areas which are always unattractive to them.).

A second distinction arises from the question of availability of im-—-
migrants (usually larvae) in wide-dispersal species. Are only a few arri-
ing to resettle the area, or are they washing in on the tides in millions?
The latter case, where enough immigrants arrive to fi1l every available
site, i1s termed the "ubiquitous immigrant" case (Section 7.3.,2). If there
iz a shortage of settlers, whether due to limited adult stock in the vi-
cinity, or low fecundity, or unfavorable transport (currents, tides, winds),
then this is the '"non-ubiquitous" case. This final case~-wide dispersal
non-ubiquitous-—~is difficult to analyze due to the uncertainty of immi-
grant availability (Section 7.3.3). 1t is, however, an exceptional case
for which only a few species qualifz and these are primarily birds.

3. Colonizing individuals settle. After oil has degraded suffi-

ciently to allow successful settlement, colonizers are exposed to the
usual physical rigors of the habitat (temperature, salinity, waves),
which, however, may be altered significantly in the wake of the spill
(e.g., loss of marsh grasses permits wave-induced erosion). They also
suffer a milieu of biological pressures which changes continuously with
recovery., Predation, parasitism, competition and commensalism during
recovery may differ dramatically in intensity and identity from these

processes in the established pre-spill habitat.
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One logical, comprehensive approach to the changing recovery milieu--
an interspecies dynamic model--has been ruled out due to data unavaila-
bility. However, this problem is one of succession in marine habitats.
Further theoretical treatment of this problem has not been explored in
this study, but it deserves attention.

4. Recovery is completed. For annual species recovery is defined

as reestablishment of pre-spill population density. TFor perennial spe-
cles recovery is equated to regeneration of a pre-spill stable age-dis-
tribution within the population. Our rationale for this criterion 1is
simply that a species with a stable age-distribution seems well entren-
ched in its habitat. Stable age-structure criterion is favored over a
minimum density criterion because the latter is even more difficult to
define and implement. Natural fluctuations in density are great, and es-
pecially in species of commercial importance where age implies size, a
recovery criterion ought to reflect age-structure as well as density.

The question of whether natural marine populations ever exhibit
stable age-distributions deserves attention. In fact, it would appear
that such phenomena as dominant age-classes and highly variable plank-
tonic conditions preclude occurrence of stable age-distributiom, at
least in WD marine species. WNevertheless, with assumptions on fecundity
and mortality, a time to stable age-distribution is theoretically cal-
culable for any perennial species and 1s considered a working definition
of time to recovery.

Figure 7.3.1 indicates one additional class of recovery yet to be
discussed: pelagic species. Admittedly, "pelagic species" is not a re-
covery strategy in the same sense that WD-U or NWD are strategies; it is
a habitat sufficiently unique in size and dispersal characteristics to re-
quire separate consideration. It is dealt with in Section 7.3.5.

In summary then, the following classes of dispersal (recovery) strategy
are defined:

1. wide dispersal-—ubiquitous immigrants (WD-U)} (Section 7.3.2)

2. wide dispersal--non-ubiquitous immigrants (WD-NU) (Section 7.3.3)

3. non-wide dispersal (NWD) (Section 7.3.4)

4, pelagic species (Section 7.3.5).

Each dispersal type may be either annual or perennial. From available data

a species can be placed in one of the above categories. If data permits,
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an additional distinction concerning age~specific survivorship canm be
drawn, and then the time to stable age-distribution can be computed for
each class of recovery strategy.

Before proceeding to more detalled consideration of each recovery
strategy the reéder is cautioned to view all computations and other esti-
mates of recovery time with utmost respect for facets of the problem not
fully considered. No doubt some people (including the authors) may view
with great skepticism estimates of recovery based on a set of assumptions
which do not carefully account for Interspecies dynamics. Blooms (ex-
plosive population growth), inhibiting predation, competition and over-
grazing are not modeled--nor can they be in the wide range of cases con-
sldered herein., It is assumed that there is always room for a speciles
once decimated to return and recolonize--no other species will usurp its
niche and its niche will still exist. Gaining a foothold in the environ-
ment is not considered a problem. An organism simply needs time to grow
to the proper age and recovery is complete. None of these assumptions
are necessarily true. For some species they may not even be useful appro-
ximations.

On the other hand, the authors do not view the analysis as useless.
The theoretical approximation to recovery processes developed herein is
a working hypothesis from which some insight to the problem is gained and
more adequate answers to the problem can ultimately emerge. The fact re-
mains, unfortunately, that the data base and knowledge of governing pro-
cesses is grossly inadequate for drawing definitive conclusions other than

the need for additional basic research.

7.3.2 Recovery Model: Wide-Dispersal-Ubiquitous Species

Recovery time from total mortality in & habitat for any Wide-Dis-
persal-Ubiquitous (WD-U) species is estimated to be approximately the
average longevity (life span) of that species. This result is arrived
at analytically using simple demographic techniques (Appendix 7-1), but
is also intuitively appealing, without recourse to the concept of stable
age-distribution and a demographic model. Special-case considerations
such as immigrating adults and interspecific relationships, which may
alter the estimated recovery time for some species, are also considered.

A model is used in this analysis which 1s based on a simple life-
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table type model of age-specific population growth and decay. TFor com-
putational simplicity, a specific matrix form (Leslie matrix, Emlen, 1973)
1s used which requires age-specific schedules of survivorship (probability
of surviving to each age class) and fecundity (eggs, offspring, etc., pro-
duced per female per year in each age <lass). In addition carrying capa-
city (maximum possible population density) must be specified. From these
data, given an initial age-structure, the age-structure over time can be
estimated (see Appendix 7-1 for model details).

Application of the model has not been made on a species-by-species
basis. Rather, for a wide range of hypothetical survivorship curves time
to stable age-distribution (recovery time) is computed, assuming an ini-
tially decimated population. For survivorship curves typical of WD-U spe-
cies the time to stable age-distribution is approximately equal to longe-
vity. These results assume a static "equilibrium" survivorship schedule
throughout recovery which is unrealistic and leads to a "dominant year-
clags" phenomenon for all WD-U species. Dominant year—classes, though
frequently observed in many species, rarely survive intact and then die
off suddenly at the end of their life-span, precipitating the start of
another dominant year-class, as predicted by the model.

Intra-specific factors that may influence the time to stable age-
distribution for a species are density-dependent phencmena, growth rate
and mobility of adults. Density-dependent phenomena for WD-U species are
ignored, by definition. For this class of species, density is assumed
constant and equal to the "equilibrium” density as soon as recovery be-
gins (see Section 7.3.1 for a justification of this assumption). The mo-
del used in this section does not explicitly discuss growth in size of re-
established individuals. Growth is assumed commensurate with age, while
density remains constant. Lack of time and a need for simplicity are the
main reasons for neglecting this Inconsistency, as data on growth rates
exist for many species. To handle this problem in the future one would
have to treat "equilibrium" density as a function of age-specific popula-
tion. This simplification primarily results in an estimate of a stable
age-structure with too many individuals in the later age-classes.

In most WD-U species recolonization will be by species larvae,l.e.,
all immigrants are in the oth age class. However, a few WD-U species
also have significant adult migration. Adult mobility, if present in a

B2



species, can greatly reduce the time required to reach a stable age-dis-
tribution (see also Appendix 7-2)}. For species where adult immigration
is possible, the time to stable age-distribution is of the order of one
half the average life span, or less.

Major inter—specific effects which may effect recovery time for spe-
cies include non-equilibrium food, predation and competition conditions, and
dependence on a successionally prerequisite species. Interspecific influences
of complex food, predation and competition patterns under "equilibrium" con-
ditions are taken into account implicitly by "equilibrium" survivorship rates.
Under '"non~equilibrium" conditions (such as recovery from an oil spil}l},
transient changes in the community structure of a habitat induce different
survival rates in the recovering species.

A more realistic model recognizes the changing biological environment
(e.g., type and density of the recovering species, food, predators, compe-
titors, and parasites) during the recovery process. Therefore, survivor-
ship schedules also change with time. Unfortunately, except for barnacles
(Balanus balanoides) (Connell, 1961), data are not available from which such
time-varying survivorsghip curves can be estimated for narticular species.

Furthermore, the few accounts of community structure during recovery after
a gpill (Sanders, et., al., 1970; North, et. al., 1964) do not provide a suf-
ficient basis for predicting overall community structure during recovery,
from which "non-equilibrium" survivorship rates can be determined. Conse-
quently, the analysis of recovery time in this section is based on "equili-
brium" survivership values, with the realization that for some species this
approach is certain to give erronecus recovery times. As the following
examples illustrate, predictions of recovery time not accounting for inter-
specific factors are most 1ikely too low.

Several cases have been cited in the literature where inter-species
effects have greatly effected the post-spill survivorship of species, se-
riously delaying recovery:

1. TFollowing the wreck of the Tampico Maru (North, et al., 1964), the

kelp Macrocystis pyrifera bloomed within four months. The kelp sub-
sequently died down, but has repeated this cycle several times

since then. The violent cycles which have been observed since the
spill are uncharacteristic of M. pyrifera in that area. The cyc-

les are attributed to the large reduction of the sea urchin popu-

83



lation in the cove, which had previously grazed the kelp to a more
stable level.
2. Following the heavy use of dispersants during the Torrey Canyon

spill (Smith, 1968), fucoid algae bloomed on rocks where originally
limpets and periwinkles, now eliminated, had grazed the algae.

Once the algae had covered the rocks of an area, recolonization by
limpets and periwinkles was much slower than in areas where a few
surviving winkles had kept the algae partially grazed.

3. Soon after the West Falmouth oil spill (Sanders, et al., 1970), in-
tertidal stations where almost all fauna was eliminated saw a bloom
of the small worm Capitella ocapitata. Presumably, when competi-
tion for resources was temporarily eased, this oil-resistant worm
was able to bloom. As soon as other species began to repopulate
the area nine months after the spill, C. capitata returned to its
"equilibrium" density.

Without additional data on specles and communities it is not possible
to refine predictions of inter-specific relations on recovery. However, ag-
sumption of an "equilibrium" survivership curve throughout recovery is a
first approximation, which probably yeilds a minimum recovery time for the

"equilibrium" eurvivership

Woirst case conditicon of 100% mortality., Since
values can have & broad range, fluctuations in age~specific mortality may
average out to fit into that range amdr show no effect on recovery time.

A recovering species may also require another species to be present in
the environment before the recoverer can reestablish. Examples are specia-
lized predators which require their food to be present, and specialized epi-
phytes which require their substrate to be present. This additional inter-
species effect is also neglected as unimportant for most species. Considering
the ecology of the WD-U class, one finds that most species are such broad
generalists, particularly in their food preferences, that successional order
does not delay their recovery. In the cases of the few WD-U species which
are not broad generalists, an estimate of possible additional delay can be
added to each species recovery time.

To summarize the treatment of the main factors determining recovery-
time to stable age-distribution for WD-U specles:

1) Based on age-specific survivorship for a wide range of survivorship

curves covering all realistic estimates for WD-U specles, time to
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recovery is approximately equal to longevity.

2) Age-specific fecundity can be ignored by definition of WD-U species,

3) Density-dependent phenomena can be ignored by definition of WD-U
specles.

4) Growth-rate is omitted for simplicity. However, this omission will
only cause a miss-estimate of the stable age-distribution, not the
time to reach stable age-distribution.

5) Adult mobility is not applicable to most WD-U species, but can be
treated as a speclal case where relevant. Adult mobility may reduce
recovery time to one-half longevity or less.

6) Inter-specific effects during recovery sre cnly treated qualita-
tively., These effects may cause significant ervors in recovery
time estimates approximated by use of "equilibrium" survivorship
rates throughout the recovery process. It is likely that resulting

estimates are too low but the size of any error is unknown.

7.3.3 Recovery Model: Wide-Dispersal-Non-Ubiquitous Species (Birds)

Specific estimates of recovery time from LOU% mortality in a habitat
for wide-dispersal non-ubiquitous species are not made. Uncertainties in im-
migrant availability--by definition, non—ubiquitous immigrants--not only make
recovery difficult for a particular species, but make development of models
difficult. A useful model must explicitly provide functional representations
of the relationship between a limited adult stock or offspring production in
one area and number of recruits entering another-area. Even in relatively
well-studied populations, such as certain fisheries, stock-recruitment rela-
tionships are poorly known (see, for example, Cushing, 1973). Therefore,
this class of recovery 1s treated quantitatively. Because birds constitute
the only selected species which fall into this c¢lass, the remaining discus-
sion focuses specifically on avian species.

Atlantic and Alaskan coastal habitats support nundreds of species of
birds, providing wintering grounds, breeding grounds, feeding grounds, and
migratory routes. Some birds frequent these shores who in other seasons
are as far away as the Arctic or Antarctic circles; others have established
year-round residences here; still others migrate up and down the coast with
the sun, stopping over at a number of different habitats during their jour-

ney. A few bird species are selected for consideration in this study.
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It iz safe to say, however, that marine/estuarine bird populations are in
general extremely vulnerable to catastrophic mortality from oil spills -
(Clark, 1971).

The rationale for this hypotheeis, beyond observations, is straight-

forward, Six factors contribute to the precarious status of bird populations.

1. Bird kills from oil result from coating of the feathers by either
weathered or unweathered petroleum. The insulation property of the
inner feathers (down) is lost, and the bird literally freezes to
death in any season., A bird must either enter oil-slicked water to
suffer this fate (diving birds) or move about in a shoreline habitat
covered with washed up oil (any shore birds). Diving birds show no
awareness of the presence of a slick, dive directly into it, and may
perish in great numbers (Nelson-Smith, 1973),

2. The total populations of birds are relatively small. Small popula-
tions run a higher risk of extinction, by whatever cause (MacArthur,
1973). The passenger pigeon, for instance, was reduced to a frac-
tion of its original numbers by American settlers, and then natural
population fluctuations, easily absorbed in the original stock, ap-
parently led to extinction of the smaller flocks.

3. Bird fecundity, typically 2-3 young/breeding pair-year severely li-
mits their ability to recoup lasses Lo their numbers.

4. Maturation usually requires 3-4 years, delaying further the recovery
process.

5. Bilrds often are highly aggregated, in flocks, and may expose an en-
tire breeding population to a localized threat such as oil.

6. Some species live to 40 years or more, and many live at least a de-
cade. If we require reestablishment of the pre-spill age distribu-
tion for recovery, we may still be waiting in 2000 A.D.

All bird species are considered as WD-NU (wide-dispersal non-ubiquitous)
and recovery time is not estimated (see Section 7.3.1). WD-NU is an appro-
priate pigeon-hole because although any area in a denuded habitat is equally
likely to be recolonized (WD), there will be a dearth of immigrants (adults
and young) after a kill, and the density will be far short ot the carrying ca-
pacity (NU). ©No recovery time is indicated because recovery time will be con-
tingent on a number of factors about which we have little or no information.
These include total population; degree of aggregation of gpecies into discrete

breeding stocks (“"discrete breeding stockq" are those which would not assist
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each other in recovery), and extent of kill. Extent of kill in turn depends
on spatial aggregation of species (what percent of population visits oiled
area during period of danger), feeding techniques {(diving birds are most
likely to become oil=-coated), and of course migratory patterns, native
habitats, etc., which determine whether and when a population occurs in an
area. '

In short, then, a very real and serious threat to bird populations is
posed by oil. Extinction is not infeasible given the proper circumstances.
Wide variations in initial kill and recovery are anticipated as functions
of species, season (in fact, day of yvear), and location of spill, (Clark
(1973) reviews additional literature documenting further the threat of oil
to birds).

As a next step, the previous criteria for vulnerability could be applied
to Atlantic and Alaskan coast species, those most threatened identified, and
simple recovery models postulated. Good fecundity and mortality data does
exist for some species, and lower bounds on recovery might be generated.

Lack of time has prevented pursuing such an approach during this study.

7.3.4 Recovery Model: Non-Wide-Dispersal Species

Ingufficient data exist on immigration rates of Non-Wide-Dispersal
(NWD) species to allow prediction of specific recovery times. Variations in
recovery conditions from site to site further complicate any predictions of
recovery time. Nevertheless, this class of species is reckoned the most sen~
sitive to accidental oil spills, because of its slow dispersal strategy and
uncertainties about success of the strategy. A conceptualization of re-
covery of an NWD species is proposed below which indicates information needs
and reflects the site-specific variations im recovery time which may occur.

Recovery of NWD species is built on a two-criterion definition of re-
covery! both pre-spill age-distribution and density of individuals must be
present for recovery to be complete. Thus, the overall recovery process can
be broken down heuristically into two related processes: immigration into
the decimated area, and stabilizarion of the colonized population. Only one
of these processes is limiting to recovery in any particular case, but which
one is not known in advance of the actual analysis. (If this model can be
applied to a number of cases, it may be possible to ultimately discard groups
of species whiech will be limited by one criterion.)

Any attempt to actually analyze these two coupled processes must account
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for several important parameters, including age-specific fecundity, mortality,
and immigration rates and the areal expansion rate for the population. Im-
migration which is site-specific and varies from spill to spill, depends on
the density ot the stock population ocutside of the recovery zone, the size
of the stock population and its distance from the recovery zone, and on the
degree of obstruction by currents and landforms. Age-distribution of immi-
gratioﬁ depends on the age{s) at which the species is mobile. Areal expan-
sion rate is also site-specific, dependent on the degree of obstruction to
fmmigration, the speed of the mobile age(s), and the length of time per year
that those age-classes are mobile. This conceptualization is based on the
following assumptions:

1) Dimunitionof the stock population by immigration into the re-

covering zone is negligihle;

2) Population growth is density-independent;

3) Expansion rate is independent of un~invaded area or size of reco-

vering population.

Since density will indeed mitigate growth when the population has
reached the carrying capacity of the environment, this model gives a poor
estimate of the recovery time for species in situations which reach the pre-
¢pill density long bafore "aquilibrium" age-distribution., These cases ap-
proach the WD-U case, and could be modeled as such if the need arises. It
is thus hoped that for all NWD species the constraining factor will prove
to be achievement of pre-spill density; then density-dependent effects can
legitimately be neglected.

Tt 1s currently impossible to proceed with this analysis to estimate a
recovery time for each species. Data on the factors wirich determine rele-
vant parameters are missing for all species. Furthermore, so many of these
factors are site-specific that a definitive recovery time for each NWD spe-
cies cannot be determined. As the analysis is done for various cases, one
may find that site-specific variations are small or are unimportant, for a
species, and a single recovery time might then be surmised.

Although actual estimates of recovery time cannot yet be made for the
non~wide-dispersal species, these species should nonetheless be noted as
among the most sensitive at the population level to a catastrophic kill.
HWD species by definition require longer than most species to reenter a de-

cimated zone wunder favorable conditions. Uncertainties about unfavorable
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conditions surrounding particular spills increase the recovery time of these
species. In lieu of a quantitative estimate of sensitivity, a qualitative
statement must be made emphasizing the special sensitivity of these species
to & catastrophic kill,

Table 7.3.4-1 lists the selected species from the sub-regions along
the Attantic Coast which fatl into the NWD class. ‘lhe species are sub=-divided
into the four similar groups: Spartina spp., Amphipods, Polychaetes, and Gas-

tropods.
TABLE 7.3.4-1 Non-Wide Dispersal Species

. Spartina spp.

Spartina altemiflora
Spartina patens

Amphipods

Ampelisca spp.
Corophium volutator
Orcheatiidae spp.
Hourtoriua canadensls
Leptocheirus pinguis
Amphiporeia virginiana
.Paracercetie caudata

Polychaetes

Nereis virens
Arenteota marina
Glyeera atbranchiata
Clymenella. torquata
Nepthys caeca
Ampnaretidae spp.
Diopatra cuprea

GGastropods

Thate laprlius
Polynices duplicata
Urogalpinx cinerea
Bittium spp.

7.3.5 Recovery Model : Pelagic Species

Organisms of the pelagic zone are considered in this section. Special
attention is prompted by the importance of the zone to the larval develop-

ment and dispersal of most marine species, including the great majority of
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those exploited commercially,

The pelagic zone differs from the other habitats in defying the impo-
sition of "boundaries" that contairn a particular population. It is clear
that one day a potential spill site may be swarming with juvenile shrimp,
the next day infested with copepods, and so on. Because so many unpredic-
table variables (maybe even more so than other habitats) mediate the ef-
fect of a pelagic spill on pelagic populations, only worst case hypotheses
are examined. In the process some species will still appear more or less
immune to the oil threat; others receive attention compatible with the avail-
able data base.

A question arises as to what constitutes a significant loss in the pe-
lagic biomass. If ten square miles of oceanic life is impacted and all or-
ganisms in the area killed by a spill, is that significant? What about an
entire generation of copepods over Georges Bank, is that a significant loss?
Rather than define significance in terms of areal, interspecies (predator-
prey), or commerclal effects, we simply consider impact to be significant

if it would detectably (i.e., a difference could be measured with existing

tecbniques) alter for more than & year the size or age-distribution of an
impacted "breeding pepulation”. TFood chain and other interspecies ramifi-

cations are not considered.
The term "breeding population" is defined by example: there is a se—

parate breeding poﬁulation (stock) associated with each of the five spawning
grounds of cod indicated im Figure 7.3.5-3 and there exist separate breeding
populations (stocks) of alewife, each spawning in a different native estuary,
and so on. If a breeding population or portion thereof, is eliminated, some-
where in some season, a year or more later the loss will be measureable.
Under this definition a population level analysis is once again warranted.
Here, however, knowledge of the migratory behavior of each breeding popu-
lation is necessary.

Admittedly, the analytical structure is contrived, but it i3 also ma-
neageable, Especially for some fish species, "breeding populations" are iden-
tifiable, at least in a particular season. Other species, such as copepods,
euphausid shrimps, cladocerans, etc., presently cannot be partitioned into
breeding populations (although such assemblages may in some cases exist) and
each specles is treated as a single widely distributed population. Not sur-
prisingly, in general the bigger and more diffuse the 'breeding population”
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the smaller the potential effect of an oil spill. The importance of iden-
tifyving the population unit of interest is apparent.

7.3.5.1 Analysis

Organisms of the pelagic habitat may be conveniently subdivided into
planktonic species (passively drift with currents) and nektonic species
(actively swim). Species which may exhibit actively controlled vertical
mobility are considered as planktonic.

Plankton include phytoplankton, "resident zooplankton or holoplankton
{copepods, arrowworms, cladocerans, other minute crustacea), and "transient"
zooplankton or meroplankton (the larval stages of most fish, polychaete worms,
crustacea, molluscs, echinoderms, cnidarians, ctenophores, and other ''les-
ser" phyla), Nekton includes adult fishes, squid, some shrimp, aquatic mam-
mals, and a number of smaller species, including adult sea butterflies and
jellyfish from selected species lists.

The plankton-nekton distinction proves useful in asseasment of poten-
tial impact of o0il occurring in the pelagic zomne. This is so simply be-
cause pelagic oil takes its toll at or near the surface on organisms unable
to avoid contact with a epill. Nektonic species are thus assumed essentially
invulnerable to a slick., As discussed in the section on continuous spills
{Section 7.6}, what little is known on vertical dispersion of spilled oil
suggests that potentially toxic concentrations are only found a short dis-
tance beneath the slick. In addition, it is assumed that a nektonic organism
can swim away from a slick without harm. The assumption follows Nelson-
Smith (1973) who hypothesizee that nektonic species avoid contaminated areas
as an explanation for the apparent lack of significant fish kills following
major oil spills in the pelagic zome. An alternative hypothesis (Dr. M.A.
Roberts, VIMS, personal communication) is that although nekton may be most
dense in the impact zone compared to other depth zones, the densities are
so small as to prevent recognition of a direct kill. In such a case, avoi-
dance is not involved. In any case, the effect is the same——1little or no
impact on nektonic species.

Planktonic species are not confined to surface waters and therefore are
not necessarily exposed to an oil spill. However, their largely passive
drifting with the currents implies the possibility of being exposed te sur-

face conditions., Neuston--strictly surface dwelling plankton-—are clearly
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directly threatened. However, active veriical migrators in a worst case
assumption are also potentially threatened.

These points combined with the conspicuous absence of adult fish kills
from even the larger offshore spills compel us to conclude that nektonic in-
dividuals probably avoid the onslaught of pelagic oil, For these reasons
we restrict further attention to the fate of planktonic organisms and their
respective "breeding populations".

All planktonic species (included here are species which have a plank~
tonic stage in their life history, e.g., many fish) examined occur over a
wide area or in widely separated areas; in either case a single oil slick
could never pose a threat to an entire species population (except possibly
birds). However, as discussed above, some species aggregate in nature into
smaller breeding populations, such as the alewife native to a particular
river, effectively yielding separate sub-species. If all planktonic species
are sorted into the two classes--those whose members are associated with dis-
tinguishable breeding populations, and those apparently of a single, well-
dispersed, reglon-wide stock--then a working hypothesis is that oil may pose
a threat to the former class, if breeding populations are small or localized
enough to be impacted by a single spill, but apparently not to the latter.

We have now deduced our way by a naive order-of-magnitude argument to
a minimuw set of pelagic species whose population units of interest cannot
be assumed immune to oil (see Figure 7.3.5~1)., Of primary interest are me-
roplankton, éspecially larvae of fish species. However, it is possible that
certain holoplankton may exhibit significantly localized "breeding popula-
tions". A third group of potential interest are diving birds. However,
these latter avian species have been treated in Section 7.3.4 as wide-dis-
ﬁersal—non—ubiquitous species. Phytoplankton, most copepods, cladocerans,
and larvae of decapods molluscs, and polychaetes are assumed buffered by
their areally wide distribution from the effect of a single oil spill. Un-
doubtedly further research may reveal breeding populations in some of these
species, and a reassessment will be necessary. For the most part, however,
high fecundity and/or frequent reproduction in these species should render
the impact of a spill undetectable within a few weeks or months at worst. For
now it appears that changes in small, localized, breeding populations are the
only threat of oil in the pelagic habitat.

Data on the distribution of Sagitta elegans (arrowworm) states that it
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is "endemic to an area,” but does not indicate degree of agpregation. It
is cited here as an example of holoplankton species which may be threatened
in localized areas. The only pelagic species remaining to be considered are

(larvae of) certain fish.

7.3.5.2 Fish and 0il

In this section the threat of o0il spills to fish is discussed. This
threat is via the potentjal effects on larval stages., For ezse in analysis
and reference here nearshore species from habitats other than pelagic are
treated in addition to the pelagic habitat species. First, the fish and oil
problem as a whole is qualitatively assessed. Second, a tentative vulnera-
bility chart for selected fish species in each region is presented with some
comment;

To the best of our knowledge and imagination there are three mechanisms
by which 01l may impact the individuals and thus the size and distribution
of a fish population. None of the mechanisms involve mortality of adults
at sea since they have been surmised to actively avoid oil-contaminated wa-
ters. This evasive response is hypothesized to occur in all species although
it has been suggested for only a few.

An oil spill may lead to:

1) Egg and/or larval mortality on spawning and/or nursery grounds.
Eggs and larvae may be effected by concentrations of soluble aromatic hy-
drocarbons in excess of .l ppm (see Chapter 6).

2)  Adult mortality or failure to reach spawning grounds if the spill
occurs in a confined, narrow or shallow waterway necessary for migration
or spawning. Anadromous fish crowding into an estuary would seem especially
vulnerable to this hypothetical disaster.

k)] Loss of a local breeding population or ability to breed due to
contamination of spawning grounds, or the destruction of the nursery area
by oil.

These last two possibilities have never been observed. In addition the
question of fish tainting due to-possible accumulation of hydrocarbons either
directly from the water or through the food chain is not considered here.

Since peints (2) and (3) are not explored in the literature, we can do
little more than indicate when species are anadromous, spawn in shallow wa-

ter, or have restricted nursery sites. The significance of a threat to any
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species cannot be resolved with the available data.
Degree of impact of a spill on an egg or larval cohort (individuals
born in a particular year) will depend on:

(1) Time of year of spill, and season and duration of spawnm.

0f course the ofling must occur during or immediately preceding the spavning
or larval period to present any danger. Also, however, a species with a
sufficiently long spawning period could possibly sustain a spill early in
the spawning season and probably still provide an adequate number of }oung

after the oil had degraded. .

(2) Aggregation of eggs and larvae. As is quite intuitive, the loss

from a single spill will depend on the fraction of a population (or spawn)
encountering the spill. The more aggregated the eggs or larvae, the more
viulnerable the cohort and thus the population to a single spill.

(3) Type of eggs and larvae. Agaln, no research has been conducted

on this point, but it ig reasonable to expect demersal eggs and larvae to
fare better than planktonic eggs and larvae when a floating oil slick invades
an area. However, oll deposited in sediments may affect demersal forms.

No effort was made in this study to model fish populations mathemati-
cally and examine their response to a perturbation such as larval losses
from oil. The state of the art of fisheries model often cannot account for
the dynamics of fish populations (see, for example, Gulland, 1972), The
controlling variables are not known. Often, recruitment is assumed con-
stant, which of course completely obscures variability in egg and larval
survival. The numbers of eggs and larvae are usually so immense that 9%
must die in the "equilibrium" population. Predation and starvation serve
naturally to pare a year class down to size, but it is not clear whether ini-
tial losses by oil would be felt subsequently as a reduced number of recruits
(new adults) or absorbed as a loss analagous to predation.

It 1s surmised here that long-lived species could probably sustain
the loss of an entire year class without serious stock reduction. Short-
lived species, however, such as pink salmon (a 2 year life history), subject
to severe losses in a particular larval class, may suffer significant re-
duction in population biomass, apparently requiring a few years for recovery.
This opinion certainly requires validation, but as it speaks to a very
worst~case agssumption--loss of entire year class--it may be somewhat reas-
suring for long-lived species. On the other hand, fish populations are re-

knowned for producing periodic¢ dominant age classes, which can support a do-
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mestic fishery for a decade {(Cushing, 1973). If such a larval class suc-
cumbs to o0il (worst-case assumption), the loss would be great (although it
would never be known what had been lost).

It is clear, then, that once again much more is unknown than is known.
Acting on those facts available and reasonable hypotheses, vulnerability of
selected fish species by region is examined below. In most cases, fish

species do not appear threatened under our set of assumptions.

Northern New England Region (Bay of Fundy to Cape Cod) — TABLE 7.3.5-1

Seven fish specles plus shrimp are included as selected species for the
northern region. These include alewife, Atlantic salmon (endangered}), At-
lantic herring, winter flounder, cod, sand launce, mummichog, and northern
shrimp (Eﬁndhlus borealis). Approximate breeding seasons are indicated in
Figure 7.3.5-2, With suitable reservations on the two anadromous species,
alewife and salmon, the possible threats from oil seemed to be to winter
flounder, which has quite discrete breeding stocks and demersal eggs and
lafvae, the sand launce with possibly limited spawning populations and sites,
and the mummichog minnow, which spawns in a few inches of water ggar shore.

Information was provided by the Research Institute of the Gulf of Maine
(TRIGOM) on the spawning grounds of eight northern fish, and major zones
of occurrence of thirty species. This information can be used to identify
potentially productive fishery zones. Spawming grounds are shown In Figure
7.3.5-3, and it is interesting that only haddock, of the species shown,
spawns over the proposed drilling sites.But many additional species are
not dealt with in the information available for this study and some of
which may of course spawn over the hypothetical drill sites.

Northern shrimp which occur predominantly in the Inner Gulf of Maine
appear unthreatened by oil development at the proposed sites. Inshore spills
could cause some mortality, but the population seems too large and disaggre-

gated to suffer from a single apill.

Southern New England Region (Cape Cod to Sandy Hook) - TABLE 7.,3.5-2

Eighteen species of fish are selected for this region. These in-
clude smelt, alewife, Atlantic menhaden, scup, mackerel summer flounder,
yellowtail flounder, butterfish, winter flounder, haddock, red hake, mummichog,

cunner, tautog, sand launce, silversides, bluefish, striped bass, and blue-
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fin tuna. Breeding seasons are indicated in Figure 7.3.5-4, With suitable
reservations on the anadromous smelt, alewife, and striped bass, the species
possibly threatened reduce to summer and winter flounder, both with pos-
sibly very discrete spawning populationms, tautog, with distinct spawning
populations and sites, and the sand launce, with possibly distinct spawning
populations and sites, Figure 7.3.5-3 also includes spavning grounds for

some of the species for this region.

Middle and Southern Atlantic Region (Sandy Hook to Cape Canaveral) - TABLE 7.3.5-:

Ten specles of fish are selected for the middle and southern Atlantic
region. They include hogchoker, croaker, spot, gray trout, menhaden, striped
bags, spiny dogfish, scup, summer flounder, and southern kingfish. With
suitable reservations on the anadromous atriped bass, species possibly wvul-
nerable to oil are hogchoker (four age-classes winter simultaneously in an
estuary), and summer flounder (possibly very discrete spawning populations).
Insufficient information was available to judge vulnerability of croaker, -
8pot, gray irout, or southern kingfish. No charts of spawning or occurrence

areas for southern fish species have been prepared.

Alagka Region

The paucity of data on fish in the Gulf of Alaska does not permit a
species level analysis. It is unknown whether localized breeding popula-
tions (rendering a fish species potentially vulnerable to oil spills) oc-
cur in the offshore or coastal zones. Anadromous species of salmon are
prevalent in this region. However, the degree of localization in these ana-
dromous populations is unknown. In any case, as in Atlantic regions, few
species are likely to have these sensitive characteristics, and therefore
most fish species, in the Alaskan region, are not expected to be vulnerable

to oil spills.

In summary, information available on the fisheries varies widely in
completeness and accuracy from species to species. 1In addition, charts of
spawning grounds and occurrence are available for only a small fraction of

the species examined, and for the most part these are in the northern re-
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gion. The choice of species discussed in the report was made by different
individual subcontractors (TRIGOM, URI, VIMS) who placed different empha-
8is on the importance of fish in their choice of selected species. This
is 1llustrated by the total number of fish In the selected species lists
for each region: 7 (North New England), 19 (Southern New England), 10
(Middle and Southern Atlantic). Selecting a fish species in a region does
not reflect a relatively high occurrence of the fish in that region. 1In
fact, many of the middle region specles are actually centered in the Gulf
of Maine, or off North Carolina, etec,, vet were not chosen as selected
species by the other regiomnal contractors. These discrepancies are a pro-
duct of the time schedule of this project, precluding closer coordination
of the varlous regional studies, and of the differing interest and exper-

tise of the contractors. Realizing this, one cannot differentiate the sen-

sitivities of the three regional fisheries from the conclugiong of this

fisheries section.

7.4 Accidental Spill Model : Regional Habitat Analysis

Sections 7.2 and 7.3 provide a population level analysis of impact and
recovery of oil spills without reference to specific marine habitats (ex-
cept the pelagic zonme in Section 7.3.5). In this section the approach de-
veloped 15 applied to the specles selected for each habitat in each of the
three Atlantic regions (gee Chapter 4).

The results presented below are for the worst-case condition of 1002
mortality to a population in a habitat. The results are not of actual spill
impacts, but rather provide a basis when combined with Chapter 5 for esti-
mating a general "habitat vulnerability".

7.4.1 Recovery-Time Estimates for Selected Species

Tables 7.4-1 to 7.4-23 list by speciles approximate time to recovery for
a population decimated by o0il, excluding the lapse until the substrate be-
comes suitable. For WD-U species, it is argued (Section 7.3.2) that re-
covery time is of the order of longevity. Certainly if replacement of el-
der individuals is held a partial eriterion for recovery, then longevity
provides a lower bound on recovery time. For WD-NU species, such as birds

(Section 7.3.3), recovery is not predicted and ** is entered in the tables
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in the recovery time column. Recovery will depend on fecundity and disper-
sal rates in a manner either not known or, for lack of time, not computed.
In addition, the population unit of interest (e.g., breeding population) will
affect recovery time, as will intermixing among populations. NWD species
such as amphipods, and certain molluscs and worms, are also not assigned
recovery times (Section 7.3.4), The symbol * is entered in the tables un-
der recovery time. Recovery of NWD species will depend on expansion rate,
fecundity, and extent of kill. Recovery analysis of pelagic species--fish-—
has been presented in Section 7.5.2 and is therefore not included in the
present section,

It is interesting to note that although WD-U species predominate in
all habitats in all regions, WD-NU and NWD sgpecies also occur in all cases.
Given this gimilarity among habitats and awareness of data uncertainties
and inadequate treatment of interspecific considerations, no attempt is
made herein to coalesce species recovery times into habitat recovery time

estimates and differentiate among habitats accordingly.

7.4,2 Habitat and Regional Differentiation of Vulnerability

A desirable objective of the foregeing arguments and specific physical
and biological recovery-time estimates presented in Figure 5.6.1, Tables
7.4-1 to 7.4~23 and Section 7.3.5.2, 1s to differentiate (inter- and intra-
regionally} among habitats according to overall susceptibility to damage
from oil spills. If an overall ranking can be made, habitat and ultimately
regional vulnerability can theoretically be established by including in the
analysis probability of impact from a spill which is z functlion of proba-
bility of a spill and spill trajectories. The question to be considered
is: Given the same exposure to oil, do biclogical differen-
ces among habitats provide a basis for distinguishing susceptibility? Based
on the analysis presented herein it is concluded that an overall distinction

cannot be made. That is not to say that habitats are not, in fact, different

in their susceptibility to oil; but only that the available data does not
provide any substantive basis for identifying differences, This indistin-

guishable character holds for both inter- and intra-regiomal comparisons.
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Three bases for differentiation are possible: (1) persistence time;
(2) bioclogical recovery; and (3) special characteristics, such as endan-
gered species, Some differentiation based on persistence (Chapter 5) has
been made. 011 1s likely to persist for longer periods {up to 10 years or
more) in unconsolidated sediments than on rocky substrates (2-3 years}.
In addition, oil is likely to degrade more rapidly in southern regions.
However, the previous section (7.4.1) indicates the present inability to
differentiate based on biological recovery times. Special characteristics,
such as occurrence of endangered species, nursery grounds and spawning
areas may allow some measure of biological differentiation among regions.
However, insufficient emphasis on collection of this type of data has been
made in this study to state with reliability the special feature charac-
teristics of the regions considered and differentiate accordingly. There-
fore, rather than attempt to even make a tentative overall habitat ranking,
inter- br intra-regionally, it is concluded as most consistent with aval-
lable data to keep distinctly separate differentiations based on the three

factors discussed above.

7.4.3 Gulf of Alaska Regions

Section 4.4 documents the lack of information on the biology of the
Gulf of Alaska. Only about twenty species are sufficiently known to be
singled out as important. Sufficient life-history information does not
exist for even this small group of species to permit description of re-
covery strategies and analysis of recovery times. Furthermore, a recovery
analysis for these species would be of little use for accessing the sensi-
tivity of various stretches of the Gulf coastline because the geographic
distribution of these species are largely unknown. Simply too little is
known about the biology of the Gulf of Alaska to warrant or permit pre-
dicting the recovery times of species or the semsitivities of habitats.

The sensitivities of fish species from this region are discussed in
Section 7.3.5.2. Spawning and nursery areas and streams Iincorporating ana-
dromous fish are identified as the only zones where oil spills might effect
whole populations of fish. These potentially sensitive areas are uncharted
at present.

The high sensitivity to oil of birds in general is discussed in Sec-
tion 7.3.3. Birds are particularly important in the Gulf of Alaska re-
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gion; 2004+ species are found along the Gulf of Alaska coast. Many species
migrate along the flyway between Alaskan coastal mountaln ranges and the
seashore (a very narrow strip in places), stopping to rest and feed on
coastal marshes like the Copper River delta. The whole populations of

some species are known to breed along the coagt; in particular, the whole
population of the endangered Dusky Canada Goose breeds in the Copper River
delta. Species from all over the Pacific return through this area when it
gets cold in the southern hemisphere. Critical bird habitats are listed in
Table 7.4.3-1,

7.5 Continuous Spill Model

Under present practices, low-boiling fractions of oil may be released
in the effluent of platform-mounted oil-water separators. Conseguently as
much as 50 ppm of oil, primarily soluble components, is continuously dis-
charged from each platform oil-water separator unit. A localized plume——a
contaminated surface and subsurface region--will be established whose appro-
ximate extent and toxicity can be estimated (MIT 0il Task Force, 1973). If
the model of continuous spills as presented in the MIT Georges Bank Study
is adopted, then a worst-case situation is 2 square miles of contaminated
surface area downstream of the platform, through which waters pass at an
average drift of, say, a knot. The dimension of the plume perpendicular to
current flow will be small, less than 1/2 mile wide by 50 feet deep, sugges-
ting that a maximum volume of .005 cubic miles of water per hour 1s exposed
to (effective) 100 ppb of low-boiling point hydrocarboms. This is equiva-
lent to approximately 45 cubic miles of water per platform per year (ig-
noring overlap of pathlines) taking on oil which remains toxic for the length
of the water's residence in the plume (about four hours in this simplistic
example) .

The biological significance of this calculation is not clear. Macro-
fauna such as fish, squid, and aquatic mammals will supposedly actively
avoid the contaminated region (Section 7.3.5.1). Therefore primarily plank-
tonic organisms--phytoplankton, zooplankton, icthyoplankton--and their less
mobile predators--arrowworms, shrimp, and so on--may be swept through the
stationary discharge plume.

Mortality will undoubtedly occur in the more sensitive larvae and zoo-

plankton populations throughout the region of the plume, and in hardier phy-
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toplankton and predator species at least in the more concentrated regions
of the plume. It is assumed that the ultimate ramification of these deaths
to populations will not be severe because only a small fraction of a widely
dispersed planktonic population will ever encounter one of the localized
permanent plumes. This assumption is an intuitive one only, which consi-
ders the limited extent of these stationary plumes relative to the entire
offshore coastal area.

Any threat then must be to highly aggregated species, by the placement
of a platform and its associated plume in the midst of a critical area such
as a breeding ground or an eddy serving as a nursery. Similarly, regions
of upwelling commonly support a high concentration of pelagic organisms,
Placement of platforms in such regions should therefore be avolded.

An asscciated but poorly understood process is potential accumulation
of oll in sediments in the wvicinity of a platform. The extent to which oil
builds up in sediments beneath a platform cannot be predicted. However, me-
chanisms of o1l transport to the sediment can be identified., Vertical dis-—
persion due to molecular diffusion will prebably net transport significant
quantities of o1l below five meters {assiter, Powers and Devanney, 19/4).
Strong wave turbulence may drive oil as deep as 80 meters (Forrester, 1971).
Probably the most significant surface-to-sediment transport will involve sedi-
mentation--i.e., adsorption of oil onto particulate matter in the water-
column which settles to the bottom or, in the case of heavier oil fractions,
sinks directly of its own weight. 1In either event the presence of an abrupt
pycnocline {change in density with depth, a characteristic of highly stra-
tified waters)} may alter settling patterns to some as yet unexplcred degree.
Adequate experimentation remains a prerequisite to resolution of these pro-
cesses. As a final point on sediment accumulation of oil it is worth reite~
rating that the finer the sediments the longer the persistence of incorporated
0il (see Chapter 5}.

Another potential problem assoclated with continuous, low-level dis-
charges 1s potential accumulation of hydrocarbons in lipid pools of marine
organisms. Even if populations themselves are not affected, the value of
commercially and recreationally important species may be diminished by
tainting. Furthermore, accumulations over long time periods may effect popu-~
lations in presently unknown manners. In any case, these discharges con-

tribute to the overall inputs of hydrocarbons to the ocean and should be
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restricted as much as possible until subtle effects such as food chain ac-
cumulation are better understood.

It is apparent that very little is known about the potential biological
impact of offshore oil-water separator effluent. The following two guide-

lines are proposed to ensure that blological impacts are minimized:

1. Treat the separator effluent to remove soluble hydrocar-

bows before discharge. This may be accomplished with existing tech-—

nology - " but residual wastes may
have to be shipped or piped to onshore treatment facilities.

2. 1f treatment is not possible, and in any case to reduce the menace
of a blowout, it is prudent to place platforms in biologically in-
nocucus locations (if such can be identified), far from regione of
upwelling (nutrient-rich "oases" of the ocean) or spawning or nur-
sery groudns. And as discussed above, deep water and coarse sedi-~

ments may be preferable physical attributes of a drilling site.

The foregoing analysis has not referred to Gulf of Mexico drilling ex-
perience which has apparently not produced any grave impact from separator
wastes. The Gulf of Mexico is a tropical environmment, and as such exhibits
highly different productivity, nutrient cycling patterns, and competitive
strategies among organisms than the more physically controlled temperate and
boreal regions of this study. Thus the experience of the Gulf in this respect
cannot be extrapolated to the Atlantic coastal region with any degree of con-
fidence.

Until much needed experimentation on the fate and effects of separator
effluent Iin northern waters is initiated, discussion of risks and tradeoffs
remains speculation. The desirability of waste treatment under these cir-
cumstances is reiterated and field studies encouraged to resolve the uncer-

tainties of this analysis and to update the recommendations.
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APPENDIX 7-1

VARTATION OF AGE-STRUCTURE OVFR TIME
A MATHEMATICAI MODEL

An important characteristic of a porulation is its age~specific
survivorship and fecundity schedule. 1In fact, in the simplest mathematical
model of age-specific population growth, all other factors are ignored and
these two alone determine population growth and eventual stability. Pre-
sented below is an analysis of the relationship between age-specific sur-
vivorship and fecundity and time to stable age-distribution, for wide dis~
persal ubiquitous species.

The Leslie Matrix (Leslie, 1945) approach offers a simple algorithm
for calculating the age-distribution at time t from an initial age-distri-

bution at time, tO’ based on age-specific phenomena., Let:

1x = proportion of the Oth age-class of females surviving to age x
9, = proportion of females entering age x which die before age x+1
1~qx = proportion of females entering age x which survive to ape x+1
m = number of females born per female of age x

n =llongevity of the species

Nx(t)- number of females of age ¥ at time t
N(t) = vector of age-structure at time t (Nx(t) for x=0 to n-1)

Then the Leslie Matrix L is defined as

T o0 P, . . 0
L= -
o . . P_,0
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Where Fx = (1—qx_1) m = a measure of fecundity

Px =1 _qx

The Leslie Matrix has been defined such that
N(t+l) = L N (t), so that
K@ =@ty (.

A stable age-distribution N (t) is defined such that Nx(t)/Nx(t+1) is
constant, for all ages x. For computational purposes, stability occurs
when all the Rx's are within a given tolerance of each other. With this
criterion cne determines Tr (= time to stable age~-distribution), for a
given initial age-distribution, by iteratively calculating N (t) and
checking all Rx's to see if they are all "close enough™ to each other.

To apply this algorithy to WD-U species, a major alteration is made.
Age-specific fecundity is deleted (justified below) and {s replaced by
fmmigration of larvae in the Oth age-clasas, bringing the population back
up to its carrying capacity K in each time period. The standard Leslie

Matrix approach executes the following calculations:

n-1
D) n N
Nl(t + 1) - (l—qo) No(t)

N _,(t+1) = (-q _,) N, (1)

However, with the definition of a WD-U species, the age-structure of a
WD-U species is determined by:

n-1

No(t + 1) =TI(t) =K -3 N (t) (1-q)
x=0

N, (t +1) = (1-q,) N (t)

N e+ = (-q ) N _,(t)

Note that for WD-U species, the number of individuals in the Oth age-~class
is independent of age-specific fecundity, but depends instead on ilmmigrationm,

keeping the population always at its carrying capacity. Because of this
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difference, the Leslie matrix algorithm must be modified for application
to WD-U species,

The modified Leslie Matrix Lf includes an extra row and column:

[1 o0 o . . 0 0]
I -Pp =P . . . 0
0 Py O .. 0
' 0 0 P . .
L' = 1
0 P 50
. e

The modified algoritim also incorporates a modified age-structure vector

N (), with one extra element:

where K = carrying capacity of the enviromment = maximum density of the
population. Using the modified L' and N'(t) in the old algorithm, one can get

N' (¢+1) =L"N (t), and

wh(t) - ht ¥ .

The definition of a WD-U species requires that ome neglect age-specific
fecundity and pre-settlement mortality. Thus, no Fx's appear in L, and the
Oth age-class begins at settlement. Also, P0 equals the survivorship from
settlement to one year after settlement; one year after settlement is

approximately equal to one year of age, for most species.
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The Leslie Matrix algorithm, incorporating L' and N', can be used
to model population growth and age-distribution over time for WD-U sgpecies.
In order to compare survivorship schedules independent of longevity,
dimensionless ages (R) are used to measure the time increments during

recovery:
% = % of total 1life span, in increments of 10%.

In the present analysis, stable age-distribution is defined as occurring
when all Rx's equal 1 + 0.1.

The relationships between various hypothetical post-gettlement
survivorship schedules and time to stable age-distribution have been
calculated, and are tabulated in Table 7-1.1. 1In all cases, the extension
of calculated recovery time beyond one life-span is apparently caused by a
pseudo- ''dominant age-class" phenomenon, prompted by inaccuracies in the
model used. The first year's influx of K individuals in one year-clase
is carried through succeeding age-groups until at £ = 100Z all of the
survivors die. The death of the remainder of the dominant year-class
leaves a gap in the population that year, prompting another large, but
slightly damped, immigration at age £ = 100%. In this way the instability
of a dominant age-class sometimes continues for several life-spans, delaying
recovery up to Tr = (2 or 3) x longevity.

The principal inaccuracies which are responsible for the long recovery
times in Table 7-1.1 are: 1) the use of extremely high survivorship rates
throughout a species' life span, and 2) the omission of influences which
vary a species' survivorship schedule during recovery (see section 7- 3 ),
Few WD-U species (none of the selected species In this study) have survivor-
ship schedules as high as cases #3, 4, 5, and 6 in Table 7-1~1. Further-
more, to a species that did have such a high survivorship, changing inter-
and intra-gpecific factors during recovery will normally act to reduce
survivorship as the species approaches recovery. Excluding extreme
survivorship schedules, the modified Leslie Matrix algorithm shows then,

that for most WD-U species recovery time is approximately equal to longevity.
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Table 7-1-1
Time to Stable Age-Distribution for Various
Post-Settlement Survivorship Schedules

Survivorship Schedule Recovery Time

2{Z of life span]: 0 10 20 30 40 50 6¢C 70 80 90 100

(l—qﬁ) t .4 & LA 4 & & 4 A 6 b 0 1.1 x longevity
(1—qﬁ) 1.6 6 .6 6 .6 .6 .6 & .6 .6 0 1.1 x longevity
(l—qg) :.83 .8 .8 .8 .8 .8 .8 .8 .8 .8 0 2.1 x longevity
(ldqg) : .8 .9 .9 9 8 .8 .7 .8 .9 .9 0 1.3 x longevity
(1‘qg) : .9 .9 .9 .9 .8 .B .7 .8 .9 .9 0 3.1 x longevity

(=.85 .85 .85 .85 .8

o
'
o0
»
)
L]
)

o) 2.3 x longevity
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APPENDIX 7-2

EFFECT OF SIGNIFICANT ADULT MOBILITY ON RECOVERY TIME

The model of recovery of a wide dispersal-ubiquitous speciea, in
Chapter 7, assumes re-population of a killed area by larvae only. However,
a few species in the WD-U class have significant adult mobility, permitting
immigration of adults directly into the recovery area. For a WD-U speciles
with adult recolonization, recovery time is estimated as:

Tr = (0.5 to 1.0) x (longevity).

Adult recolonization acts to hasten recovery by filling the older
age~classes before the larval immigrants have aged into those classes.

Even a small amount of adult immigration will have this effect; hence,
these species are modeled with a maximum recovery time of (1.0 x longevity).
The minimum time to recovery for these species is estimated at 0.5

longevity. The constraint on the lower bound is that the density of each
age-class must be uniform over the whole recovering area. The time required
to achieve a uniform density, independent of stable age-distribution, is in
turn constrained by a species' yearly migration range and by the size of

the impacted area (see the preceding model of recovery of NWU species for a
more detailed analysis based on these two parameters). The estimated lower
bound of 0.5 x longevity is Intended only as a best-case value of recovery
time, where achieving uniform density is not a constraint.

This model of adult immigration neglects the loss to the surrounding
areas of the immigrating adults. It is assumed that such migration is
slow enough, and the stock population large enough, that losses due to

immigration will not be felt.
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CHAPTER 8
ANALYSIS OF SELECTED HYPOTHETICAL OIL BISCHARGES

8.1 Introduction

The principal objective of this study is to assess potential
bioclogical effects of hypothetical oil discharges. Given the high levels
of uncertainty associated with all aspects of the available data base, no
definitive predictions of spill effects can be made. However, rough
estimates can be made and, consistent with the previous material presented,
a systematic framework for assessing effects is layed out.

Only a small set of selected discharges are considered in detail.
However, events other than considered here may be analyvzed by the zame
approach used below, 1f warranted.

8.2 Accidental Spills Originating from Hypothetical
Atlantic OCS Drilling Sites

Accldental spills cccurring at' drilling platforms may effect the
pelagic zone, off-shore bottom habitats and nearshore habitats {(e.g., sand
shore, recky shore, salt marsh, etc.). Potentizl pelagls zone effects
have been previously discussed in section 7.3.5., The arguments presented
therein are summarized and elaborated appropriately in section 8.2.1.
Section B8.2.2 presents a discussion of possible spill effects on offshore
bottom habitats. Nearshore effects of platform spills depend upon several
factors, especially time to reach shore and distribution of various habitats
(due to differences in, primarily, persistence of oil). Therefore, nearshore
habitat effects (except fish species) are analyzed in section 8.2.3.

8.2.1 Pelagic Zone Effects (including nearshore fish species)

The primary threats of an oil spill in the pelagic zone are:

1) potential direct effects on eggsand larvae of many fish species; 2) dis-
ruption of breeding in certain fish species; and 3) effects on diving birds.
As discussed in some detail in section 7.3.5, concern is focused on species
which demonstrate a significant degree of localization, particularly during
breeding. Widely-dispersed populations with extensive intermingling of
adults throughout the pelagic zone are hypothesized to be protected from
any detectable effects due to the shear size of the area over which such

a population 1s distributed relative to the size of a spill.
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An o0il slick moving on the ocean sutrface can be expected to kill
much of the plankton and neuston with which it comes into contact. During
the first two days or so mortality can result from both toxic effects of
lower boiling hydrocarbons still present in the slick and from mechanical
coating of organisms with oil. Over longer time periods—-throughout the
life of the slick—mortality may result from ocating effects.

In offshore regions, because the total area swept by the spill is
small relative to the total surface, the expected percent of any plankton
population killed will be negligible, except possibly for aspecies with
localized "breeding populations” (see section 7.3.5). In this latter
case, if a local population exists which does not intermingle with indi-
viduals of the same species from other areas, then the area swept by a
spill may be large relative to the area inhabited by the local population,
resulting in a kill of a significant percentage of the population. Re-
covery in such a gituation will depend on the degree of isclation of the
local population as well as other factors normally effecting the recovery

process (section 7.3). Arrowworms (Sagitta elegans) are the only zoo-

plankton species identified at this time as exhibiting any_degree of
logalization, For most zooplankters {copepods, cladnrerang, etrc.) data
is not available which indicates whether or not any significant locali-
zation exists. However, probably all planktera demonstrate unpredictable
localized aggregations——and may be temporarily affected. 1In any case
virtually all zooplankton species live one year or less and have high
fecundities, indicating that the effects of a spill will be undetectable
within a year or much less.

Except for anadromous fish species, which may be threatened by a spill
occurring nearshore which could interrupt a spawning run, kill migrating
adults, or contaminate breeding grounds no fish species examined appears
seriously threatened based on the assumptions and analysis presented in
section 7.3.5.2. Beyond expressing concern for a threat to a species, it
is not possible with the available data to make any prediction of the
potential effect a particular spill moving into an estuary may have on
anadromous species occurring in each of the regions. However, as shown in

section 8.2.3 hypothetical oil spills occurring at proposed drilling sites
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in the Southern Atlantic (EDS 10, 11, 12, and 13) may find their way into
estuarine subsystems. Hypothetical spills occurring in the Middle Atlantic
(EDS 5, 6, 7, 8 and 9) are less likely to be transported with any integrity
as a slick into estuarine waters. Also, as indicated in Figure 7.3.5-3,
the Middle Atlantic region may be less important as an offshore spawning
ground than other areas. Finally, although spills originating at drilling
sites on the Georges Bank have apparently no chance of finding their way
into estuaries, the importance of these offshore waters as a spawning and
nursery grovnz must be recognized.

A final problem to be considered relative to the effects on the
pelagic zone of hypothetical spills is effects on birds. In general, bird
species constitute one of the most vulnerable populations to catastrophic
mortalities (see section 7.3.3). However, lnsufficient information is
avatlable for this study (although some relevant data may exist) to identify
specific effects resulting from particular spills hypothesized for specific
spills (see section 7.3.3).
8.2.2 Offshore Bottom Effects

Offshore bottom habitats may be exposed t oil as a result of sedi-
mentation of oil or other processes which transport oil vertically downward
in the water column. These processes are not well enough understood to
predict the amount or composition of oil that may reach bottom sediments at
various depths. Data collected by Forrester (1971} following the spill
from the Tanker Arrow indicate that little or no oil may be transported to
depths below 100 meters. However, significant amounts of oil from the Santa
Barbara spill were deposited in offshore bottom sediments because of high
concentrations of suspended sediment in the region of the spill (Kolpack,
1971). In general, crude oll that is transported into offshore (water depths
exceeding 50 meters) bottom sediments can be expected to have lost a large
percentage of the lower boiling, toxic hydrocarbons during the sedimentation
process. In addition, the oil is likely to be well dispersed so that coating
effects are unlikely to be significant. The most important effect likely to
occur is the possible alteration of sediment characteristies, possibly making

areas effected unsuited for certain normally found species. Such effects may
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persist for 2-3 years in sandy bottoms, longer in sediments containing
significant amounts of silt or mud and indeterminately long if sediments
are anaerobic (see Chapter 6). 1In general, the sediments of the offshore
bottoms throughout the Atlantic OCS are gravelly or sandy, although
significant wuddy areas do occur, especially on Georges Bank. More
specific predictions of the effects in these offshore bottom areas cannot
be made without better knowledge of the amount and composition of oil
which may be transported into the sediments.
8.2.3 Nearshore Habitat Effects

Nearshore habitat effects of spills originating offshore are gummarized
in Table 8.2.3-1 for specific spill scenarios associated with each hypothet-
ical drilling site. The meaning of each column in the Table 1is explained
below.

Spill scenarios are described by several parameters:

EDS - hypothesized drilling site number (see Chapter 2). Only spills
originating from the center of the drilling site location are con=
sidered.

Time to Shore — minimum and average times in days calculated for
spills in specified season of the year to reach shore (Stewart,
Devanney and Briggs, 1974).

Season - season of the year yielding "worst case" condition in terms
of shortest time to shore and highest probability of coming ashore.

Most Likely Impact Zone - coastal region in which spill is most likely
to come ashore. A single spill would impact only a portion of the
area within the specified region.

%4 of Spills Ashore in Zone - according to the analyses by Stewart and
Briggs (1974) the percentage of 200 hypothetical spills which come
ashore somewhere within the zone.

The impact for each scenario is described by:

011 Composition - unweathered (contains sufficient lower bolling,
hydrocarbons to cause toxic responses), weathered (lower boiling,
hydrocarbon concentration too low to cause any significant toxic
regnonse), very weathered (only tarry, residual petroleum substance
remains).

01l Amount - an estimate of the "slick" form and size which may come
ashore. Patch size depends on volume and rate of spilled oil release.

Coverage - estimate of extent of impact zone effected by single spill.
Size of "subarea associated with particular spill depends on volume
spilled.

Habitats Exposed ~ habitats, as defined in Chapter 4 and discussed in
Chapter 7 which are found in impact zome and are expected to be exposed
to oil.
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The initial biological effects of the impact scenario are described

by (see Chapter 6 and 7)

Lethal and Sub-lethal Toxiecity - estimated extent of these effects
on individuals in each habitat exposed.

Incorporation — the extent to which hydrocarbons may become
incorporated in various organisms.

Coating and Habitat Alteration - estimate of extent of these effects.

Estimated Population Mortality - estimate of percent of any population
killed by above effecrs.

Finally, recovery from these effects are described in terms of resi-
dence time of oil in the habitats exposed and approximate time for popula-
tions and communities effected to recover.

As is evident from Table 8.2.3-1 none of the hypothesized spill
scenarios are expected to cause significant biclogical damage to nearshore

habitats. This result is principally due to the fact that all spills con-

gidered originate far offshore.

8.3 Accidental Spills Originating from Hypothetical
Gulf of Alaska Driliing Sites

Nine drilling sites are proposed in the Gulf of Alaska (see Chapter

2). Hypothetical spills under different current conditions (Stewart and
Briggs, 1974) (no current or counterclockwlse gyre) are considered in the
in the same manner as described in section 8.2. Hypothetical releases
causing worst damage (shortest time to shore and/or highest pro-
bability of hitting shore) are given in Table 8.3-1 which is analogous
to Table 8.2.3-1. Note that only worst case results are shown. Other
current season spill scenarios (Stewart, Devanney and Briges, 1974) also.
shlow high probahbilities of o0il coming ashore, but not as high as those
listed. Drill sites 2-6 yield very high probabilities of oil beaching,

f= ¥
[
4

in most to their proximity to shore.

The stretch of shore impacted most frequently by drill sites 2-6
is the vicinity of Cape St. Elias. The most notable biological feature
in this region is the marshland of the Copper River Delta, an extensive
feeding ground for birds on the Pacific Flyway, and the only known
habitat for the Dusky Canada Goose. Approximately 200 species of birds
pass through or live permanently in this marsh each year.

The probably widespread coating of shorebirds along the eastern
Gulf of Alaska coast is the only clear-cut bioclogical impact which can
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be discerned from the scarce data available. Other potential biological
effects cannot be identified nor dismissed from available biological
information,

Spill trajectory information provides one possible basis for a
decision., Drill sites 7-9, because of lower probability of spills
coming ashore and because of less danger to ghorebirds, are preferable
to sites 1-6. However, this is not to say that problems do not exist for
sites 7-9, or that other envirommental risks, not obvious due to the lack
of data, are not present for sites 1-6. The critical lack of data on the
areaz makes this whole analysis speculative at best.

8.4 Accidental Spills Originating at Terminals

011 spills resulting from OCS petroleum developments can occur near
shore from tanker, barges and/or pipelines, as well as offshore platforsm.
An innumerable number of hypothetical near shore events can be postulated,
each spill scenario having different characteristics. FExamples consi-
dered herein follow from the three specific hypothetical terminal sites
identified by CEQ (Chapter 2); Buzzards Bay, Delaware Bay, and Chdrleston
Harbor.

Stewart, Devanney and ﬁriggs (1974) have revorted spill trajectory
characteristics for hypothetical spills at each of these sites. Their
analysis focuses on time to shore for a spill and the percentage of
initial impacts on & specified shoreline area. In all three situations
there 1s a significant chance of o1l coming ashore within 1-2 days,
causing impact of unweathered oil on intertidal areas. At each site
specific location of spill release and time of year alter the impact
site, the time to shore and probability of coming ashore.

At Buzzards Bay 75-90% of all hypothetical spills released near West
Falmouth comes ashore within 30 hours. Fifty percent of hypothetical
winter spills released at the entrance to New Bedford channel come ashore
in 40 hours, Hypothetical spills released in central Delaware Bay have
somewhat higher times to shore. Approximately 30% of all hypothetical
spills released reach shore in 50 hours. Similar results obtain for
spills released at the mouth of Delaware Bay. Probability of coming
ashore i1s higher and time to shore is lower for spills released in
Charleston Harbor. Typical times to shore are 10 hours or less and

virtually all hypothetical spills released come ashore in 30 hours or less.

116



Although the foregoing results indicate variations among the sample
terminal locations, the essential conclusion is that in all cases there
is a relatively high probability of an unweathered oil spill impacting
the shoreline. In general, the result of such an event, independent of
the specific zone of impact, will be high mortality of individuals in
most phyla and heaving coating of intertidal substrates. Recovery—-
physically and bioclogically=~would be many vears, at best, depending in
part on the type of substrates ccated. The effects of the West Falmouth
spill of #2 fuel oil (Sanders et al., 1972; Blumer et al., 1972) are
typical of what can be expected from near shore spills, even spills of
crude oil. As discussed in Chapters 5 and 6 unweathered crude oil con-
tains sufficient low boiling aromatics to cause toxic responses in most
marine species. 1In fact, crude oil can be expected to persist even
longer than #2 fuel oil, as in the West Falmeuth case, because of a
large residual fraction absent in #2 fuel oil.

More specific treatment of nearshore spills is not given here for
two reasons. First, the envirommental inventories (Chapter 4) were not
designed to provide the level of detall necessary to capture specific
descriptions of the three terminal areas considered. Secondly, given
the results of Chapters 6 and 7, a more detailed level of analysis is
not warranted because of uncertainties in the effects of oll and re-
covery processes.
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS FOR RESEARCH

9.1 Conclusions

1. The available data does not allow a differention among habitats,
intra- or inter- regionally, based on biclogical recovery time differences
from an oil spill causing 100% mortality within a habitat. Such dif-
ferences may exist, but cannot be identified by the methods used herein.
Differences may be identifiable In terms of blological characteristics
particularly valued by man, e.g., commercial fisheries.

2. The persistence of o1l resulting from impact of the main body of
a spill in marine substrates varies from a minimum of 2-3 years on rocky
shores to a minimum of 5-10 years in fine, unconscolidated sediments. 0il
in rhe same habitat type can be expected to persist longer in more north-
ern regions. But the magnitude of the difference between northerm and
southern regions cannot he estimated.

3. Biological recovery of habitats in which 100 mortality occurs,
after degradation of o0il allows recolonization, can only be estimated as
“several vears”. Aggregation of estimated selected species recovery
times to a reliable estimate of habitat recovery time, and ultimately
regional vulnerability, is not possible given the available data,

4, 1In general, fish populations do not appear to be threatened by
mortality resulting from oil spills. Anadromous species, such as alewives,
striped bass and salmon, may be threatened by nearshore spills which could
interrupt spawning migrations or disrupt localized breeding. Although a
significant threat to many species cannot be identified, significant
uncertainty exists, especially relative to sub-lethal effects. Accordingly,
spawning grounds and larval nursery areas are considered more vulnerable
than other regions, all else beilng equal.

5. Birds, as many researchers have suggested and ds observations
imply, appear to be one of the most vulnerable group of populations examined.
The life histories of most avian species dictate that recovery from unusual
adult mortality is a long and difficult process. In addition, individual
birds are extremely vulnerable to death from o0il slicks. No region has

been identified as more or less important relative to bird populations.
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6. Spills originating from hypothetical Atlantic offshore platforms
are not expected to cause severe biological damage. In most cases, drill-
ing sites are sufficiently offshore to alleviate potential nearshore pro-
blems. The primary effect expected 1s localized deposition of weathered
patches of oil or tar balls on rocky or sandy shores. Where deposited
such o1l may persist for two vears or more. Population mortalities would
be immeasurably small. For certain southern-most sites the probability of
significant nearshore biological damage is higher.

7. Based on lower probability of a spill coming ashore and longer
time to arrive on shore, hypothetical driiling sites EDS 6, 7, B, 9 off
the New Jersey Coast and sites FDS 1, 2, 3 and 4 on the Georges Bank are
preferred over sites EDS 10, 11, 12 and 13 off the coast of Florida and
EDS 5 south of Long Island.

8. Spills originating at nearshore terminals which come ashore
within 1-2 days can be expected to cause extensive initial mortality in
all exposed habitats and require many years for physical, chemical and
bioclogical recovery. None of the nearshore terminals examined are free
from thia potential result,

9. Little can be said about the biological effects of oil spills
occurring in the Gulf of Alaska. Habitats cannot be identified and
described nor is much known concerning distributions of substrate tvpe
or populations. As a result, even if spill scenarios can be hypothesized,
the exposed populations are not known, much less potential effects on
thege populations.

10. The biclogical significance of tontinuous discharges from ¢il-
water separators, or other sources of chronic discharges of hydrocarbons,
remains obscure. However, until more definitive analysis can be made,
discharges of this type should be closely regulated. Concentrations
exceeding 0.1-1.0 ppm soluble aromatics are likely to have lethal effects
on the most sensitive individuals. Population consequences cannot be
evaluated.

11. Two concepts relied on extensively in this analysis appear to be
more broadly applicable to environmental impact analysis. First, dis-
cretization of large environmental regions into habitats 1s useful for
obtaining some measure of the distributiom of both physical and biclogical

variables. Secondly, identification of recovery strategies is a first
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step towards an ecological basis for assessing vulnerasbility of various
species to environmental changes. The utility of this approach derives
from explicit consideratioﬁ of life history phenomena. However, extensive
efforts remain to refine and validate this utility of this approach.

12. Large levels of uncertainty exist in all phases of the analysis.
Insufficient baseline data exists for all regions. Compilation of this
data will require above all, time. Many biological phenomena, such as
life histories, simply require many years to be observed. Therefore,
carefully designed baseline biological studies should be initiated at
the earliest possible data. However, significant effort should be made
to ensure proper design of such monitoring program. At the present time
little is known about how to design "proper' monitoring programs, i.e.,
where, when, what and how to sample,

9.2 Recommended Research

The lack of data, repeated to the point of boredom throughout this
report, indicates the need for extensive research. The list of recom-
mended research topics below i1s intended to highlight only those areas
which the authors believe deserve priority consideration. Both pure and
applied research is needed. Many of the recommended research topics are
long-term efforts, which cannot be expected to be solvable by 1, 2 or 3

years study-—decades may be requiraed in some cases.

1. Investigation of petroleum degradation processes and determination
of weathering rates as a function of temperature, light, nutrient concen-
trations, etc.

2. Investigation of the physical/chemical relationships between oil
hydrocarbons and sediment materials. Particular attention should be given
to sedimentation processes transporting hvdrocarbons into bottom sediments,
and to the effect of sediment on degradation of low-boiling aromatic
fractions.

3. Studies of oil content of sediments and suitabilitv of sediments
for habitation by a wide spectrum of species. TIn addition, the role of oil
compasition on sediment suitability should bhe investigated.

4, Tdentification of specific hydrocarbons causing toxic effects.

All biocassay Investigations should be coupled with analytical chemical
studles.

5. Investigation of adaptations of organisms to oil exposures,

including genetic changes.
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6. Basic studies of population life histories for many species are
needed. Studies should include identification of survivorship, fecundity,
larval life style, migrations, behavior, etc.

7. Careful investigation of communitv successions at the species
level should be undertaken following actual pollution incidents and in

controlled, experimental situations.
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